

3000PLUS PANEL METER WITH MODEL 5D64

DC Voltage Conditioner Module

INSTRUCTION MANUAL

Copyright © 2008, Daytronic Corporation. All rights reserved.

No part of this document may be reprinted, reproduced, or used in any form or by any electronic, mechanical, or other means, including photocopying and recording, or in any information storage and retrieval system, without permission in writing from Daytronic Corporation.

All specifications are subject to change without notice.

Daytronic Corporation

Dayton, OH • (800) 668-4745 www.daytronic.com


PLEASE NOTE

This manual treats the setup and use of a 3000PLUS meter in which a Daytronic

Model 5D64 DC Voltage Conditioner Module

has been properly installed. If your 3000PLUS is equipped with a 5D Series conditioner model other than the 5D64, the corresponding instruction manual should be consulted.

<u>ALWAYS TURN OFF THE 3000PLUS</u> BEFORE REMOVING ITS INSTALLED 5D SERIES CONDITIONER MODULE, OR INSTALLING A DIFFERENT MODULE IN THE 3000PLUS CHASSIS. <u>DO NOT REPLACE THE INSTALLED CONDITIONER MODULE</u> WHILE THE 3000PLUS IS ON.

TABLE OF CONTENTS

1	Introduction				
1.B 1.C 1.D 1.E	General Description and Specifications Physical Layout Panel Mounting Data and Status Display Front-Panel Button Functions Installing and Running the 3000Plus Configurator Software	3KP64 - 1.5 3KP64 - 1.6 3KP64 - 1.7 3KP64 - 1.9			
2	2 Connections				
2.B 2.C 2.D	Power Connections Serial Communications Connections Transducer Connections Analog Output Connections Logic I/O Connections	3KP64 - 2.2 3KP64 - 2.3 3KP64 - 2.4			
3 FRONT-PANEL CONFIGURATION AND CALIBRATION					
	Introduction				
4	SOFTWARE CONFIGURATION AND CALIBRATION				
4.B 4.C 4.D	Using the 3000Plus Configurator Software Summary of Configurator Menus Overview of "OFF-LINE" Configuration Overview of "ON-LINE" Configuration Software Calibration of the 3000PLUS with 5D64	3KP64 - 4.3 3KP64 - 4.4 3KP64 - 4.5			
5 OPERATING CONSIDERATIONS					
5.в 5.с 5.р	Sending a Command to the 3000PLUS Capturing a Signal Peak Applying a Signal Hold Applying a Tare Offset Limit Monitoring	3KP64 - 5.1 3KP64 - 5.5 3KP64 - 5.5			
APPENDIX A SUMMARY OF MNEMONIC COMMANDS					
A.2 A.3	Command and Response Syntax	3KP64 - A.2 3KP64 - A.4			

APPENDIX B 5D64 ABSOLUTE CALIBRATION CALCULATIONS

	3KP64 - B.1
LLUSTRATIONS	
	01/0/4 4 0
Fig. 1 3000PLUS Dimensions	
Fig. 2 3000PLUS Front Panel Elements	
Fig. 3 3000PLUS / 5D64 Module Rear Panel Elements	
Fig. 4 3000PLUS Panel Mounting	
Fig. 5 Panel Cutout Dimensions	
Fig. 6 3000PLUS Power Connections	
Fig. 7 RS232 Interface Connections	3KP64 - 2.2
Fig. 8 Model 5D64 Transducer Connections	21/D/4 2.4
Fig. 8.a General 2-Wire Cabling (external excitation)	
Fig. 8.b 4-Wire Cabling to DC-to-DC LVDT	
Fig. 8.c 3-Wire Potentiometer Cabling (under 20 ft. in length)	
Fig. 9 Analog Output Connections	
Fig. 10 3000PLUS Logic I/O Connections	JKF04 - 2.4
Fig. 10.a Logic Inputs with Switch Closure, Using External Supply	2KD61 - 25
Fig. 10.b Logic Input with Active TTL Logic	
Fig. 10.c Logic Outputs (Relay and TTL)	
Fig. 11 3000PLUS Configurator "Live" Output Window	
Fig. 12 Typical Asymmetry	
Fig. 13 Absolute Calibration Page for Installed Model 5D64	
Fig. 14 Two-Point Calibration Page for Installed Model 5D64	
Fig. 15 Linearity Correction in the Positive Domain	
Fig. 16 Typical Positive Peak Capture	
Fig. 17 Typical Positive Peak Reset	
Fig. 18 Peak Defeat Input Threshold	
Fig. 19 Peak Trend Monitoring Using Adjustable Leak Rate	
Fig. 20 Application of Tare Offset	
Fig. 21 3000PLUS Limit Zones	
TABLES	
Table 1 Model 5D64 Full-Scale Ranges (Nominal), with Corresponding	
Accuracies and Common-Mode Ranges	
Table 2 "Practical" 5D64 Range (RNG) Settings	3KP64 - B.1

1.A GENERAL DESCRIPTION AND SPECIFICATIONS

THE 3000PLUS PANEL METER

Incorporating Daytronic's **5D Series Signal Conditioner Modules**, the 3000PLUS Panel Meter is a field-scalable indicator featuring operator-programmable signal processing and PC/PLC communications. With a durable front panel and secure screw terminals for all power and I/O connections, this mechanically and electrically rugged instrument is ideal for pump, motor, hydraulic, and other high-noise monitoring applications.

Accepting the fully conditioned output of any standard plug-in 5D module*, the 3000PLUS maintains signal integrity to deliver accurately scaled analog output, while sampling all data at 16-bit resolution. The data display provides selectable digital filtering for even greater readout stability.

The operator can easily select any of three separate output channels for display, as explained in Section 1.D:

- the meter's standard ±5-VDC scaled output (Channel 1), representing measured engineering units (after calibration)
- the "auxiliary" DAC output (Channel 2), which serves to monitor and process Channel 1, and to generate Channel 3
- the "scaled voltage" output (Channel 3), which is continuously proportional to the reading of the auxiliary output (Channel 2). Channel 3 may be set to a full scale of either ±5 or ±10 VDC, and is available from the rear of the 3000PLUS as both voltage and 4-20 mA output (see Section 2.D).**

The auxiliary analog output (Channel 2) is used for

- HI/OK/LO limit monitoring with selectable hysteresis windows, front-panel annunciation, and relay outputs for local process control (see Section 5.E for full details)
- high-speed positive or negative peak capture with TTL-level "have peak" output, selectable "backout" and "peak defeat" thresholds, and user-adjustable leak rate (Section 5.B)
- a signal hold to allow captured peaks and other values to be transferred to computer for processing (Section 5.C)
- automatic application of a desired tare offset (Section 5.D)
- * "V" and "S" models may not be used with the 3000PLUS.
- ** The ±5-VDC output of the installed 5D64 conditioner (prior to A/D conversion) is also available from the rear of the meter.

Separate logic inputs provide external control of peak capture, signal hold, tare application, and the release of latched limit violations.

As explained in Sections 3 and 4 of this manual, you can quickly set up the 3000PLUS either via the simple front-panel button menu or via the configuration software supplied with the unit. Operator-entered ranges, filters, calibration points, and other setup parameters are always specific to the installed 5D Series conditioner

A standard RS232 interface operating at a fixed rate of 19.2K baud allows connection of an external PC for instrument configuration and on-line monitoring. It may also be used for direct communication of simple ASCII mnemonic commands both for run-time reconfiguration and for interrogation of current data and setup values.

Employing the run-time version of Microsoft® Access 2000, the **3KP CONFIGURATOR** software supplied with the Model 3000PLUS makes short work of meter setup. Communicating via the RS232 link, the Configurator lets you define, store, edit, download, upload, and manage any number of "configurations" for your 3000PLUS. As explained in Section 4, "off-line" configurations can be easily created and downloaded, or you can use the "Live Output Window" to view and modify the present configuration of the connected 3000PLUS instrument on a purely run-time basis.

The Configurator also lets you perform selected runtime operations, including

- both "absolute" and two-point (deadweight) calibration
- viewing any of the meter's three "live" analog outputs and adjusting it as desired
- · applying a signal hold command
- releasing any and all latched limits
- sending standard mnemonic commands to the meter

THE MODEL 5D64 DC VOLTAGE CONDITIONER MODULE

Delivering a high-level filtered analog output of ±5 VDC, the Model 5D64 is a wide-range general-purpose instrument for conditioning the signal received from a DC-to-DC LVDT, potentiometer-type sensor, Hall-Effect device, photocell, current shunt, or other external DC voltage source. The DC input may be either differential (floating) or grounded (single-ended).

The Model 5D64's differential inputs and generous common-mode range eliminate ground-coupling errors normally associated with off-ground signal sources. A

stable, remotely sensed excitation of ±5 VDC ± 0.02% is provided for DC-to-DC LVDT's, potentiometer-type sensors, and other transducers that may require it. With an externally powered transducer, input isolation yields an operating common-mode range of up to 1500 V (when using the regulated excitation provided by the 5D64 module, see Table 1, below). Exceptional signal stability and accuracy over a remarkably wide range of sensor inputs are achieved through

- precisely regulated, remotely sensed excitation
- · chopper-stabilized low-drift amplification
- configurable low-pass active filtering
- "absolute" software-based calibration
- effective signal isolation & ESD protection

Plugging into the rear of the 3000PLUS meter, the 5D64 connects directly to its source strain gage sensor via simple screw-terminal pinout (see Fig. 3). High output accuracy over a wide temperature range guarantees repeatable sensor signal integrity. For steady indication and smooth, dependable control action, the conditioner provides a true average value of the measured variable, even in the face of substantial dynamic content.

The 5D64 features

- Powerful user-selectable low-pass active filtering for removal of unwanted high-frequency measurement-signal components and the elimination of aliasing errors
- High input impedance on all ranges to eliminate cable resistance as a source of error (allowable cable length has virtually no practical limits)
- **High noise rejection**, eliminating errors from common-mode pickup and ground-loop coupling, with

1500 VAC isolation between input and output terminals and between I/O and power supply / communications terminals

High ESD immunity and extensive EMI protection further assure data integrity in harsh industrial environments

Internal "ABSOLUTE" CALIBRATION ensures high accuracies, without elaborate trial and error procedures. Thus, to calibrate the 3000PLUS meter's installed 5D64 module, you need only use the front-panel menu or configuration software to specify the desired relationship between the measured engineering units and the ±5-VDC output, given the full-scale voltage range for which it is currently set. If the received input is to represent an analog of some parameter other than voltage itself, you will also have to enter transducer sensitivity and range information (as explained in Sections 3.B and 4.E). A zero offset term may also be entered, expressed either in engineering units or millivolts.

Conventional TWO-POINT (DEADWEIGHT) CALIBRA-TION may be applied, if desired, to improve on the "absolute" calculations, when there are at least two independently and accurately known calibration points ("ZERO" and "SPAN"). Internal symmetry trimming is also available for negative-domain slope adjustments of up to ±2% of full scale, along with internal midscale linearity correction, both positive and negative.

Guaranteed "absolute" calibration accuracies for a properly configured 5D64's input ranges are given in Table 1, below. By virtue of the unusually high stability of the 5D64 instrument, even higher accuracies can be achieved with additional high-precision two-point calibration.

SPECIFICATIONS

Model 3000PLUS

Case: Extruded metal chassis, mountable to user's panel (see Section 1.C); secure rear connections via screw terminals

Dimensions: See Fig. 1, below

Power Requirements: 24 VDC ± 10%; 300 mA nom.; 350 mA max.; 8.4 W; optional AC adaptor (Model 3KPS1) available

Operating Temperature Range: 0° F to 130° F (-18° C to 55° C)

Operating Relative Humidity: 10% to 95%, noncondensing Instrument Weight: 1 lb., 10 oz. with 5D module installed

A/D Conversion: 16-bit

Sample Rate: 10 kHz; delay of 20-25 msec for limit evaluation of DAC output

Data Display: 6-digit red LED; count by 1, 2, or 5 resolution to maximum count of 199990 (see Section 1.D); selectable digital filtering

Displayable Data Channels: (1) ±5 VDC Scaled Output; (2) Auxiliary DAC Output; (3) Scaled Voltage Output; selectable via front panel or software

Programmable Processing of Auxiliary DAC Output (Channel 2):

Limit Logic: Three limit zones (LOW/OK/HIGH) with frontpanel annunciation and corresponding contact relay outputs (see below); latching or nonlatching limits; user-adjustable hysteresis windows; selectable relay polarity

Positive and Negative Peak Capture: Controlled by logic input (see below); selectable "peak defeat" and "backout" thresholds; user-adjustable leak rate

Tare Offset: User-adjustable offset applied and released via logic input (see below)

Hold Command: Applied and released via logic input (see below) or software command

Analog Output (Channel 3): Selectable ± 0 to 5 VDC, ± 0 to 10 VDC, or 4-20 mA, single-ended; 14-bit resolution; 47-Hz filter; update rate of 20 msec

TTL Logic Inputs (UNLATCH, TARE, PEAK, HOLD) and Output (HAVE PEAK): Nominal 0 - 5 V, where 5 V = Logic 1

("true"); ± 25 V without damage; noise immunity 1 V; internal pull-down nom. 4.7 k Ω ; all inputs assume Logic 0 state in the absence of connection

Relay Logic Outputs (LIMIT HI, LIMIT OK, LIMIT LO): Two for each limit; selectable polarity; 8 A, 250 VAC at full resistive load; switch lifetime at 1 A exceeds 100,000 operations

Communications: Three-wire RS232 at fixed 19,200 Baud, 8 Data Bits, 1 Stop Bit, No Parity; for setup and data transfer

Front-Panel Instrument Indication: Limit status, displayed channel, setup stage, and overrange (flashing display)

Model 5D64

Input Overvoltage Protection: Up to 240 VAC rms on all Signal and Excitation lines

ESD Protection: Up to 4 kV on all connections

Isolation: 1500 VAC between input and output terminals; 1500 VAC between I/O terminals and power supply / communications terminals

Transducer Types: Virtually any transducer producing DC output, either externally powered or with power requirement of 10 V @ 80 mA or less (see Fig. 8).

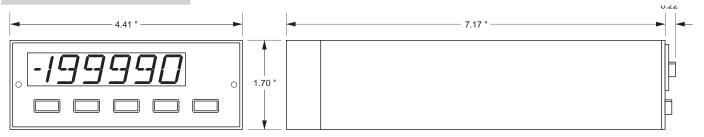
Input Ranges (Full-Scale): See Table 1, below; selectable when the 3000PLUS meter is configured (NOTE: the highest range selection accommodates actual inputs as high as 240 VDC*)

Excitation: Sensed 10 VDC (= ± 5 VDC) $\pm 0.02\%$ @ up to 80 mA **Accuracy**: Dependent on range and excitation; see Table 1 **Amplifier**:

Common-Mode Range: ±1500 V for externally powered transducers; when excitation is provided by the 5D64 module, see Table 1

Input Impedance: Greater than 5 M Ω on all ranges

Offset: Initial: ±0.02% of full scale; vs. temperature: ±25 ppm/°C; vs. time: ±10 ppm/month


Gain Accuracy: ±0.02% of full scale typical, following calibration; see Table 1

Gain Stability: vs. temperature: ±25 ppm/°C; vs. time: ±10 ppm/month

(cont'd)

Fig. 1 3000PLUS Dimensions

See Table 2 in Appendix B for the "practical" ranges that apply to the 5D64 RANGE (RNG) setting.

SPECIFICATIONS (CONT'D)

Analog Filters: 0.2, 2, 20, 200, or 2000 Hz, selectable when the 3000PLUS meter is configured

Status Indicator Light: Green/Yellow/Red; indicates module input and communications status (see Section 1.D)

Table 1

Model 5D64 Full-Scale Ranges (Nominal), with Corresponding Accuracies and Common-Mode Ranges*

(Accuracy given as % of full scale overall expected maximum error, following calibration)

Range (VDC, f.s.)	Accuracy	C-M Range (V)
0.05	0.04	1
0.075	0.04	1
0.1	0.04	1
0.15	0.04	1
0.2	0.03	1
0.3	0.03	1
0.4	0.03	1
0.5	0.02	1
0.75	0.02	2
1	0.02	2
1.5	0.02	2
2	0.02	2
3	0.02	15
4	0.02	15
5	0.02	15
7.5	0.02	40
10	0.02	40
15	0.02	40
20	0.02	40
30	0.02	40
40	0.02	150
50	0.02	150
75	0.02	150
100	0.02	150
150	0.03	150

^{*} See Table 2 in **Appendix B** for the "practical" ranges that apply to the 5D64 **RANGE (RNG)** setting. Common-mode ranges listed in the table are given in \pm VDC, maximum operating, and apply only when the 10-VDC excitation provided by the 5D64 is in use.

1.B PHYSICAL LAYOUT

Study the following diagrams to acquaint yourself with the most important 3000PLUS front and rear elements.

Fig. 2 3000PLUS Front Panel Elements

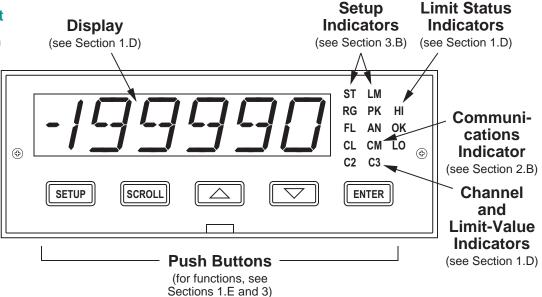
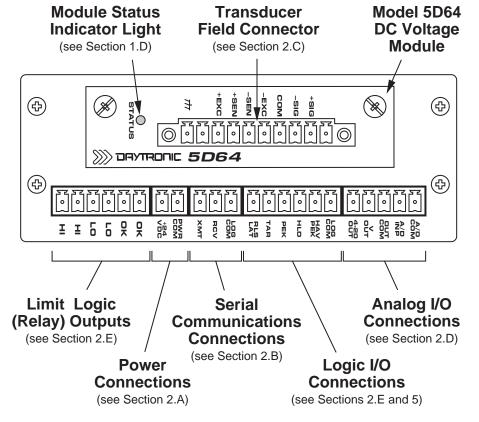
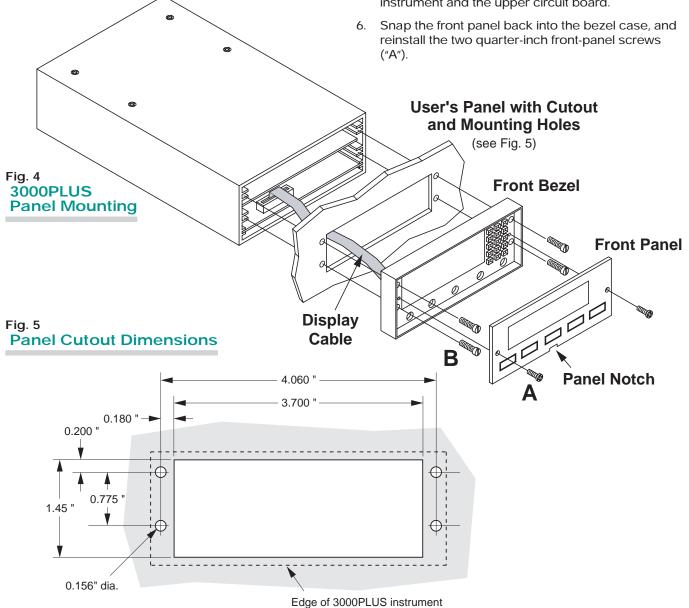



Fig. 3 3000PLUS / 5D64 Module Rear Panel Elements


1.C PANEL MOUNTING

You can easily mount the 3000PLUS instrument in your own precut panel. See Fig. 5, below, for appropriate cutout and hole dimensions. PANEL THICKNESS SHOULD NOT EXCEED 1/8 INCH. The mounting procedure is as follows:

- 1. Remove the two front-panel screws ("A" in Fig. 4).
- 2. Remove the front panel by inserting the tip of a flat screwdriver into the notch at the bottom of the panel and gently prying it out of the bezel case.
- 3. Remove the four screws ("B") holding the bezel to the instrument housing.

NOTE: YOU DO NOT NEED TO DISCONNECT THE INTERNAL DISPLAY CABLE.

- Hold the instrument housing behind the panel and pass the bezel through the cutout (with cable attached).
- 5. Reattach the bezel to the housing, using the same four half-inch screws ("B"). The ribbon cable should fold into the space between the top of the instrument and the upper circuit board.

1.D DATA AND STATUS DISPLAYS

DATA DISPLAY

Updated four times a second, the 3000PLUS instrument's six-digit data LED data display is automatically scaled to count by a resolution of 1, 2, or 5 to a maximum reading of ±199990.¹ Regardless of the scaling currently in effect, a flashing display during normal runtime operation indicates that an overrange condition has occurred. In this case, the displayed measurement reading may be invalid.

During normal instrument setup, the operator will be called upon to indicate the **DESIRED FULL-SCALE READING IN ENGINEERING UNITS** (the "FULL SCALE UNITS" or "FSU" value), to correspond to a full-scale output of 5.000 volts. This can be done via the front-panel setup procedure (as explained in Section 3.B) or via the Configurator software, on a setup or run-time basis (as explained in Section 4). The **DECIMAL-POINT RESOLUTION** of the data display for Channels 1 and 2 will always match that of the last-entered FSU value.²

You can also specify a **DISPLAY OFFSET** value ("DSO"), if desired—again, either through the front panel or the Configurator software. The DSO is a value of numeric offset (positive or negative) to be continuously applied to the displayed reading of Channel 1 or 2 (see below). Note that the DSO is applied in addition to any zero offset resulting from instrument calibration (Sections 3 and 4) and to any specified tare offset (Section 5.D).³

In addition to the normal-mode analog filtering furnished by the installed 5D64 Conditioner, the 3000PLUS can apply selectable **DIGITAL FILTERING** ("DFL") to the data display to allow smooth, stable readout of dynamic variables. The DFL number ranges from 0 through 9 to indicate increasing amounts of digital smoothing. Like the FSU and DSO values, it may be entered through either the front panel or the Configurator software.

Use of the data display for manual setup of the 3000PLUS instrument is described in detail in Section 3 ("Front-Panel Configuration and Calibration").

CHANNEL INDICATION

At any time, you can select any one of the 3000PLUS instrument's three separate output channels for display:

Channel 1—the meter's basic ±5-VDC scaled output, representing measured engineering units (after calibration). It is produced solely for display and interrogation via the CHANNEL (CHN) command (described in Appendix A).

- Channel 2—the "auxiliary" DAC output, which continuously operates on Channel 1 for purposes of limit evaluation, peak capture, tare offset, etc. It is produced for display, interrogation via the CHN command, and generation of the "raw volts" analog output (Channel 3).
- Channel 3—the instrument's "scaled voltage" output, which is continuously proportional to Channel 2.
 It may be set to a full scale of either ±5 or ±10 VDC, and is available at the rear of the 3000PLUS as both DC voltage and 4-20 mA output (see Section 2.D)

As explained in the following section, the front-panel **SCROLL** button may be used during normal run-time operation to cycle through the three channel displays.⁴ When Channel 2 or 3 is being displayed, the corresponding front-panel indicator LED (**C2** or **C3**) will light—see Fig. 2. No indicator lights when Channel 1 is displayed.

The channel that is displayed whenever the 3000PLUS is powered up is always the channel that was on display when the meter was last turned off.

COMMUNICATIONS INDICATION

Fig. 2 also shows the 3000PLUS instrument's front-panel **CM** LED. This indicator lights when the RS232 serial communications port (Section 2.B) is in receipt of one or more transmitted ASCII characters (which may or may not constitute a valid MNEMONIC COMMAND—see Appendix A).

LIMIT STATUS INDICATION

Whenever *continuous limit monitoring* of the "auxiliary" output (Channel 2) is enabled, the appropriate front-panel limit status indicator (Fig. 2) will show the **LIMIT ZONE** in which Channel 2's existing data reading lies (regardless of whether Channel 2 is the one currently

- ¹ Under a reading of about 32000, the display's least significant digit will change by 1; from 32000 to 64000, it will change by 2; and over 64000, by 5.
- ² That is, the precision (decimal-point location) both of the basic ±5-volt scaled output (Channel No. 1) and of the "auxiliary" DAC output (Channel No. 2) will always reflect that of the currently stored FSU number—as will that of other setup values that directly relate to the 3000PLUS's scaled engineering-units reading, including display offset, high/low limit and hysteresis values, "peak defeat" threshold, tared output value, and all calibration numbers (both "absolute" and "two-point") that are expressed in units.
- 3 Since the display offset is automatically set to zero during instrument calibration (either "absolute" or "two-point"), you should set a nonzero DSO value only after calibration has been performed (Sections 3 and 4).
- ⁴ The Configurator software's "Live Output Window" (described in Section 4.D), lets you view any selected channel and modify applicable output characteristics on a run-time basis.

being displayed). The three limit zones are defined by the 3000PLUS instrument's current **HIGH LIMIT** ("HIL") and **LOW LIMIT** ("LOL") settings:

- HI (or "GREATER THAN")—Channel 2's reading is greater than the current high limit value
- OK (or "BETWEEN")—Channel 2's reading is greater than or equal to the current low limit value and less than or equal to the current high limit value
- LO (or "LESS THAN")—Channel 2's reading is less than the current low limit value

When limit monitoring is disabled, none of the limit indicators will light.

For a complete discussion of limit monitoring, including definition of limit setpoints, limits LATCH MODE ("LAT"), relay contact POLARITY ("POL"), and both high-limit and low-limit HYSTERESIS deadbands ("LHY" and "HHY"), see Section 5.E.

RUN-TIME LIMITS DISPLAY

When the 3000PLUS instrument's **LIMITS SECURITY (LMS)** is OFF, the local operator is able to use the frontpanel buttons (as explained in Sections 1.E and 5.E) to quickly view and adjust the operating limit values *during normal run-time operation, without having to enter Setup Mode.* This is the case even when limit monitoring is currently disabled (Section 5.E).

When limits security is ON, the operator can view and modify the limits values for monitoring the "auxiliary" DAC output only by following the standard front-panel setup procedure given in Section 3, which may require entry of a security code.

SETUP STAGE INDICATION

Each of the seven front-panel setup indicators shown in Fig. 2 will light when the 3000PLUS enters the corresponding stage of the **FRONT-PANEL SETUP PROCE-DURE**, as listed below and described in detail in Section 3. Except for **ST** ("SETUP"), each indicator will remain on only as long as the meter is in that setup stage; **ST** will remain on until the operator exits setup mode.

- 1. ST ("SETUP")—security and module identification
- RG ("RANGE")—input range and scaling information, including (for the 5D64 module) full-scale VDC range, desired full-scale reading in units, and desired decimal-point resolution
- * Also on when viewing limits in run-time (see above).

- 3. FL ("FILTER")—analog and digital filter settings
- CL ("CALIBRATION")—including desired calibration method and all cal-point values applicable to that method
- 5. **LM** ("LIMIT")—parameters relating to the limit monitoring of the "auxiliary" output (Channel 2), including limit enable, latch mode, relay polarity, setpoint values, and hysteresis windows*
- PK ("PEAK")—parameters relating to the further processing of the "auxiliary" output (Channel 2), including peak mode, "defeat" threshold, "backout" threshold, decay rate, and tare offset
- 7. **AN** ("ANALOG OUTPUT")—full-scale voltage output, followed by entry a new security code, if desired

MODULE STATUS INDICATION

Shown in Fig. 3, the status indicator light of the installed 5D64 Conditioner module serves to monitor the module's power, input, communications, and general health condition. The condition(s) represented by the light's three possible colors and color combinations are given below.

NOTE: As long as the module is properly communicating with the 3000PLUS meter (and the meter is powered up), the indicator light will be *flashing*.

- if the flashing light is constantly GREEN, the module's input signal is OK
- if the flashing light is constantly YELLOW, the module's input signal is over 20% out of range
- if the flashing light is constantly RED, a serious input condition has been detected (e.g., excessive current, overvoltage); it could indicate a transducer short or faulty cabling
- if the flashing light is alternating YELLOW AND GREEN, the module has received a mnemonic command from the 3000PLUS meter (the yellow light will continue for about a second after receipt of the command-terminating carriage return)
- if the flashing light is alternating RED AND GREEN, a significant internal software error detected; contact the Daytronic Service Department

1.E FRONT-PANEL BUTTON FUNCTIONS

SETUP

RUN-TIME FUNCTION: Press to place the 3000PLUS in SETUP MODE, in order to change or view the instrument's present setup configuration via the front-panel buttons (see Section 3 for full setup instructions).

SETUP FUNCTION: Press repeatedly to step through the sequence of setup stages (as explained in Section 3.A). At any point during the setup procedure, pressing the **SETUP** button and keeping it depressed for about 2 seconds will return the 3000PLUS to normal run-time operation.

SCROLL

RUN-TIME FUNCTION: When **LIMITS SECURITY (LMS)** is ON, cycles through the display of the meter's three DATA CHANNELS (as described in Section 1.D):

When Channel 1 is on display, displays Channel 2 and lights C2

When Channel 2 is on display, displays Channel 3 and lights C3

When Channel 3 is on display, displays Channel 1 with no channel-indication light When **LIMITS SECURITY (LMS)** is OFF, the current LOW-LIMIT and HIGH-LIMIT values are added to above cycle (when displayed, the limit values may be adjusted by the local operator as explained in Section 5.E):

When Channel 3 is on display, displays the current LOW LIMIT; lights **LM** and **C2** When LOW LIMIT is on display, displays the current HIGH LIMIT; lights **LM** and **C3** When HIGH LIMIT is on display, displays Channel 1 with no limits or channel-indication light

SETUP FUNCTION: When the operator is called on to select one of a set of discrete values for a given setup parameter, this button is used to cycle through the display of those values (for details, see "Entering a Setup Parameter" in Section 3.A).

UP

RUN-TIME FUNCTION: Used to modify limit values when limits security is OFF (see Section 5.E).

SETUP FUNCTION: When the operator is called on to adjust the displayed numeric value of a given setup parameter, this button is used to *increase* that number—in the *positive* direction, regardless of sign—via the method explained in Section 3.A.

Down

RUN-TIME FUNCTION: Used to modify limit values when limits security is OFF (see Section 5.E).

SETUP FUNCTION: When the operator is called on to adjust the displayed numeric value of a given setup parameter, this button is used to *decrease* that number—in the *negative* direction, regardless of sign—via the method explained in Section 3.A. The **DOWN** button is also used during setup to answer "NO" to a displayed query such as "OK(?)," "RETRY(?)," or "RECAL(?)" (see Section 3.B for detailed instructions).

(cont'd)

ENTER

RUN-TIME FUNCTIONS:

- 1. Releases any and all currently LATCHED LIMITS and their respective relay outputs (see also Section 5.E)
- 2. Resets PEAK CAPTURE function; clears any currently captured peak value by momentarily disabling and re-enabling peak capture (see Section 5.B).

SETUP FUNCTIONS: Used during setup to

- 1. "Acknowledge" each setup parameter when it appears on display
- 2. Accept the currently displayed value for the parameter being set and advance to the next parameter in the setup sequence
- 3. Answer "YES" to a displayed query such as "OK(?)," "RETRY(?)," or "RECAL(?)" (see Section 3.B for detailed instructions)

1.F Installing and Running the 3000PLUS Configurator Software

PLEASE NOTE: This software requires an operating system of Windows 95 or higher. It does NOT require that Microsoft Access be installed on your computer, but does require full installation of **Microsoft Access 2000 Runtime**, which is supplied with the Configurator and which takes approximately 32 MB of hard-drive space.

If Microsoft Office 2000 or higher is already installed on your computer, Access 2000 Runtime will not be installed with the 3000PLUS ("3KP") Configurator, since the required runtime engine is already present.

For more information on "Using the 3KP Configurator," see **Section 4.A** of this manual.

To INSTALL the 3KP Configurator Software,

- Make sure to close all applications before beginning the installation.
- 2. Insert the CD supplied with your 3000PLUS and open the **3KPCNFG** folder.
- 3. Double-click **SETUP.EXE** to begin the installation process.
- Seven DLL files will first be copied to your hard drive. If Access 2000 Runtime or Microsoft Office 2000 (or higher) is already installed on your computer, go to Step 9, below.
- 5. If you see a window that says "Setup cannot continue because some system files are out of date...", click the OK button. When you see the window that says "Do you want to restart Windows now?", click the Yes button. After Windows reboots and you can see the Windows Desktop, once again run SETUP.EXE from the CD's 3KPCNFG folder (again, the seven DLL files will be loaded).
- When you see the window that says "The application you are installing requires Microsoft Access 2000...", click the **OK** button. NOTE: If a window appears that says "Setup cannot install...", click the **Yes** button.
- 7. In the "Ready to Install" window, click the Install Now button to begin the installation of Access 2000 Runtime. NOTE: This will take several minutes. A window MAY appear that says "Setup has determined that the following applications are running..." If it does, just click the Ignore button.
- When you see the window that says "The installer must restart your system before configuration...", click the Yes button. After the PC reboots, your

Windows system will be updated, and the Access Runtime installation will be completed.

- When you see the window that says "Welcome to the 3000PLUS Configurator installation program," click the **OK** button.
- If you want to keep the default installation path of C:\3KPCFG, click the large button labelled "Click this button..."

If you want to install to a folder other than C:\3KPCFG,

- a. Click Change Directory. Then enter or select the desired destination, and click OK. If the designated directory does not exist, you will be asked whether you want to create it. Click Yes.
- b. Click the large button labelled "Click this button..."
- If you are prompted to add a new group, click Continue.

NOTE: If the Configurator has been previously installed, you may get a message asking if you want to keep the existing MSCOMM32.OCX file. If your MSCOMM version is 6.0.81.69 or higher, click **Yes**. Similarly, you may get a message asking if you want to keep the existing COMDLG32.OCX file. If your COMDLG version is 6.0.84.18 or higher, click **Yes**.

Once the installation is complete, click the **OK** button

After the Configurator has been installed, your C:\3KPCFG folder (or other designated directory) should contain the following files:

3KPCONF.MDE

3KPCONF1.ICO 3KPHELP.HLP 3KPTOC.CNT ODEUNST.LOG

SAMPLE.MDB

the main "300Plus Configurator" database/program file the Configurator icon the on-line HELP file the HELP table of contents file a log file (for subsequent uninstalling of the software) a sample 5D module network configuration

(cont'd)

 To <u>RUN</u> the Configurator, go to your Windows popup Start menu, select Programs, and click 3000PLUS Configurator.

PLEASE NOTE

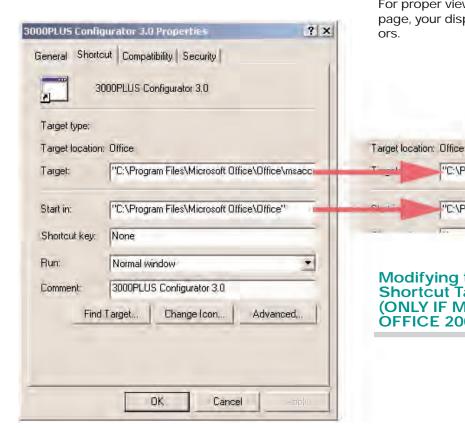
IF MICROSOFT OFFICE 2003 IS INSTALLED ON YOUR COMPUTER, you will have to modify the "target" specification for the Configurator shortcut in the **Programs** list, as follows (you only need to do this the first time you try to run the Configurator):

- a. RIGHT-CLICK on **3000PLUS Configurator** in the **Programs** list.
- b. Select **Properties**. The dialog box shown below will appear, with the cursor at the extreme right of the "Target" field.
- c. Press the LEFT ARROW key (←) to move the cursor to just after "Microsoft Office\Office."
- d. Type "11" so that the target reads"C:\Program Files\Microsoft Office\Office11\...
- e. In the Start in field, type "11" after "Microsoft Office\Office" so that it reads
 "C:\Program Files\Microsoft Office\Office11"
- f. Click **OK**.

 g. Now you can run the Configurator by clicking on 3000PLUS Configurator in the Programs list.

THE CONFIGURATOR IS A MICROSOFT ACCESS 2000 RUNTIME PROGRAM. DO <u>NOT</u> ATTEMPT TO OPEN THE "5DCONF.MDE" FILE OR ANY CONFIGURATION "*.MDB" FILE DIRECTLY THROUGH MICROSOFT ACCESS.

ALSO NOTE:


- If Microsoft Access 97 (or an older version) is installed on your computer, the first time you attempt to open an Access 97 (or older) file after installing Access 2000 Runtime, you may have to do so through the Access 97 program itself. That is, start Microsoft Access via the Windows Start / Programs menu, and use Open an Existing Database... to open the file in question. Otherwise, the system may try to open it as an Access 2000 file and ask if you want to convert it, etc.
- After installing Access 2000 Runtime, you may have to rejoin any workgroup to which you were previously joined, using WRKGADM.exe in the Windows System folder.

For proper viewing of the Configurator startup page, your display should be set to at least 256 colors.

"C:\Program Files\Microsoft Office\Office11\msa

"C:\Program Files\Microsoft Office\Office11"

(cont'd)

Modifying the Configurator Shortcut Target (ONLY IF MICROSOFT OFFICE 2003 IS INSTALLED)

A SAMPLE CONFIGURATION is installed with the software, to let you see typical 3000PLUS setup entries. Select **Open...** from the Configurator **File** menu and double-click on "SAMPLE."

- 14. To <u>UNINSTALL</u> the 3KP Configurator Software,
 - a. Go to the Windows popup Start menu, select Settings, and then select Control Panel. Then double-click on the button called Add/ Remove... (or Add or Remove Programs).
 - Select "3000PLUS Configurator" from the list of programs, and click the appropriate button to remove it.
 - c. When asked whether you're sure you want to completely remove the 3KP Configurator and all its components, answer Yes to uninstall (or No to abort). You may be asked whether you're sure you want to remove

MSCOMM32.OCX and COMDLG32.OCX (which are shared components). If in doubt, answer **No**.

d. NOTE: This procedure will NOT delete any "*.mdb" 3KP CONFIGURATION FILES currently in your Configurator installation directory which were created through the Configurator software. In fact, if you have created any such files, you will be told that the directory itself cannot be removed (click Ok to exit this message). A hidden file named "TOC.GID" may remain in the installation directory after removal of the Configurator software. This file is harmless, and will not affect any later reinstallation of the Configurator.

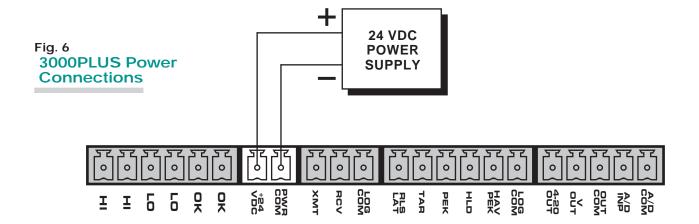
2. CONNECTIONS

PLEASE NOTE: Some of the wiring diagrams in this section show only the male connector headers on the rear of the 3000PLUS instrument (also shown in Fig. 3). Each connected wire or jumper is to be firmly secured to the corresponding **SCREW TERMINAL** of the terminal block (supplied with the meter) that plugs into the appropriate header.

CABLE SHIELDING

Proper shielding of cable wires or twisted pairs—as shown in Figs. 7 through 10—is strongly recommended to minimize the production of unwanted electrical noise from capacitive and inductive effects.

In the I/O cabling diagrams below, only the "connector end" of each cable shield is shown, as represented by a gray circle surrounding either a single wire or a TWISTED PAIR of wires within the cable. Unless otherwise stated, every shield should be grounded to the appropriate common or ground terminal only at the connector end. The drain wire tying the connector end of the shield to common/ground should be as short as possible.


2.A Power Connections

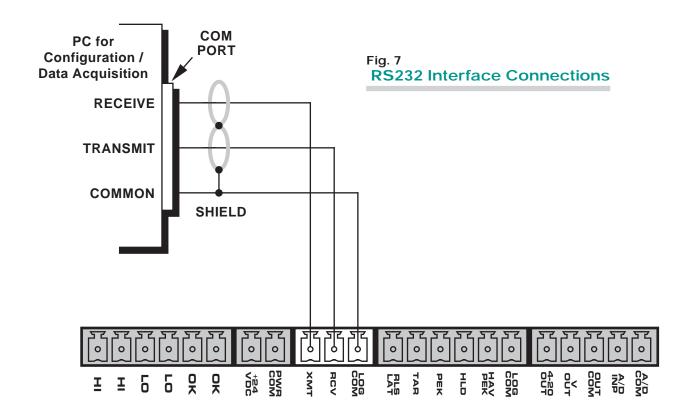
The 3000PLUS requires a user-supplied external source of 24 VDC, regulated to $\pm 10\%$. Nominal consumption is 300 mA; maximum is 350 mA.* The figure below shows how the positive and negative power leads are tied, respectively to the rear-panel +24 VDC and POWER COMMON terminals. Local grounding is not required.

NOTE: On every normal powerup, the 3000PLUS will display (for two or three seconds) its **firmware version number** ("V x.x") alternating with

COM 51

* An optional 18-W in-line power supply for the 3000PLUS (the Model 3KPS1) is available from Daytronic. Contact the factory for more information.

2. CONNECTIONS


2.B Serial Communications Connections

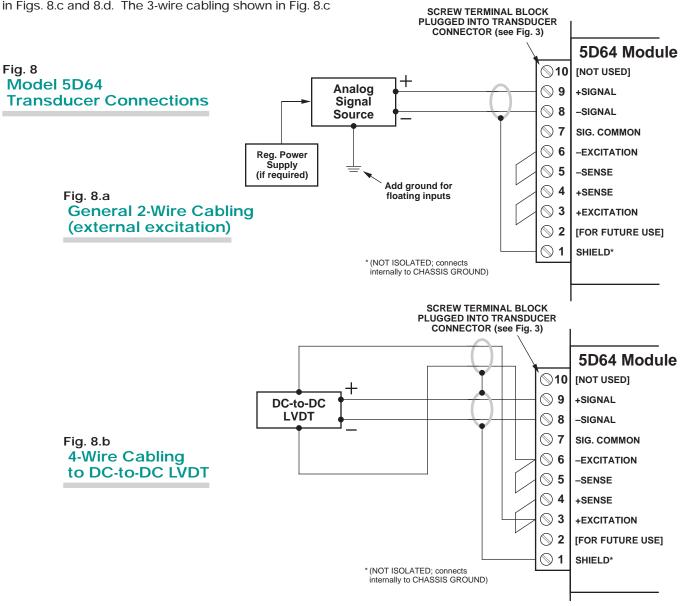
As shown in Fig. 7, simple two-wire RS232 cabling is employed for communications between the 3000PLUS and an external PC. While 3000PLUS / PC serial communications will usually take place through the 3KP Configurator software described in Section 4, a "terminal emulation" program (either conventional or customized) can also be used to issue standard mnemonic commands to the meter, and to receive meter responses.

The RS232 interface observes a fixed protocol of 19,200 baud, 8 data bits, 1 stop bit, and NO parity—with no software or hardware "handshake." The Configura-

tor software will automatically set to this protocol the computer COM PORT selected for communications with the 3000PLUS (see "Setup and Testing of Serial Communications" in the Configurator's on-line HELP system).

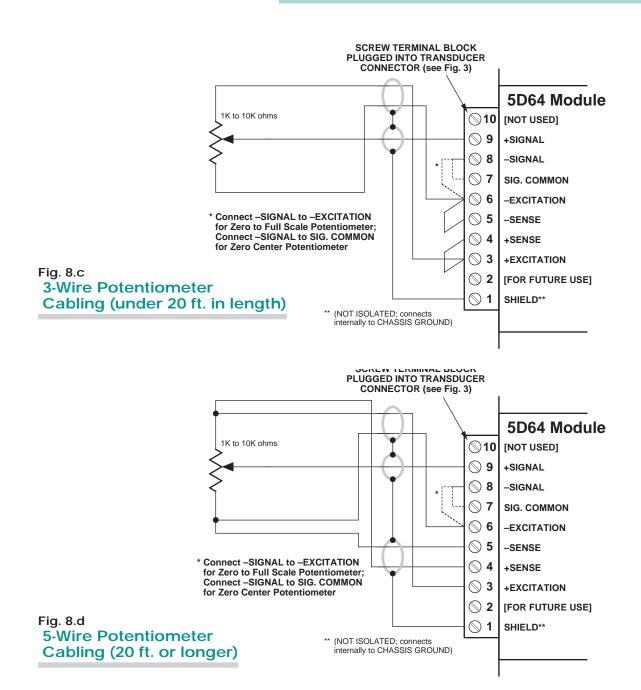
Separate shielding of the RECEIVE and TRANSMIT lines is highly recommended, especially if the cable connecting the PC and the 3000PLUS is over three feet in length. This will prevent electrical noise from causing "break" signals and other communications errors.

2.C Transducer Connections


Each wire or jumper of the transducer cable is to be firmly secured to the appropriate screw terminal of the terminal block that plugs into the installed 5D64's 10-pin TRANSDUCER CONNECTOR.

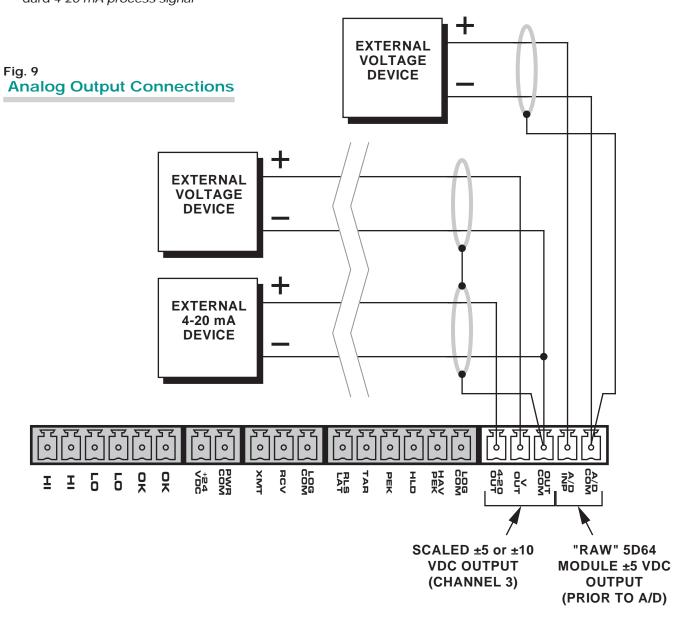
2-wire cabling for a **general analog source** that supplies its own excitation is given in Fig. 8.a. Note that a *floating* (ungrounded) input is to be grounded *at the site* of the signal source, and not at the conditioner connector. Fig. 8.b shows typical wiring for a **DC-to-DC LVDT**, using the 10-VDC excitation provided by the 5D64. In most cases, the ±SENSE lines should be tied to the corresponding EXCITATION lines *at the 5D64 CONNEC-TOR*, as shown, regardless of cable length.

Connections to an **external potentiometer** are given in Figs. 8.c and 8.d. The 3-wire cabling shown in Fig. 8.c


is to be used with a cable of under 20 feet in length (or under 0.1Ω resistance). In this case, the +SENSE and –SENSE lines are tied to the corresponding EXCITATION lines at the 5D64 CONNECTOR. The 5-wire cabling shown in Fig. 8.d is to be used when the cable is 20 feet or longer, or when fine wire is used. In this case, the +SENSE and –SENSE lines are tied to the corresponding EXCITATION lines at the transducer.

When connecting to an external potentiometer, note that the –SIGNAL line should be tied to –EXCITATION (Terminal 6) when the potentiometer is zero to full scale and to SIGNAL COMMON (Terminal 7) when the potentiometer is zero center.

2. CONNECTIONS


2.D ANALOG OUTPUT CONNECTIONS

The 3000PLUS produces three analog outputs:

- Channel 3 (VOLTS)—represents the instrument's "auxiliary" DAC output (Channel 2) as scaled voltage. As such, this output may be set to a full scale of either ±5 or ±10 VDC (1) during meter configuration (Sections 3 and 4); (2) during run-time via the Configurator's "Live Output Window" (Section 4); or (3) by direct application of the ANALOG VOLTAGE FULL SCALE (AVV) command (Appendix A).
- 4-20 mA Output—represents the instrument's "auxiliary" DAC output (Channel 2) as an industry standard 4-20 mA process signal

5D64 Output—represents the "raw" (unscaled)
 ±5-VDC output of the installed 5D64 conditioner module (prior to A/D conversion by the 3000PLUS).

Fig. 9 shows how A/D Cards, dataloggers, recorders, oscilloscopes, and other external devices can connect to these outputs. Each output is single-ended, and returns to the appropriate COMMON pin, to which the respective cable shield should also be tied.

2.E LOGIC I/O CONNECTIONS

TTL-LEVEL LOGIC INPUTS

The 3000PLUS meter's rear connector has terminals for the four "positive-true" logic-level inputs shown in Fig. 10.a, below*:

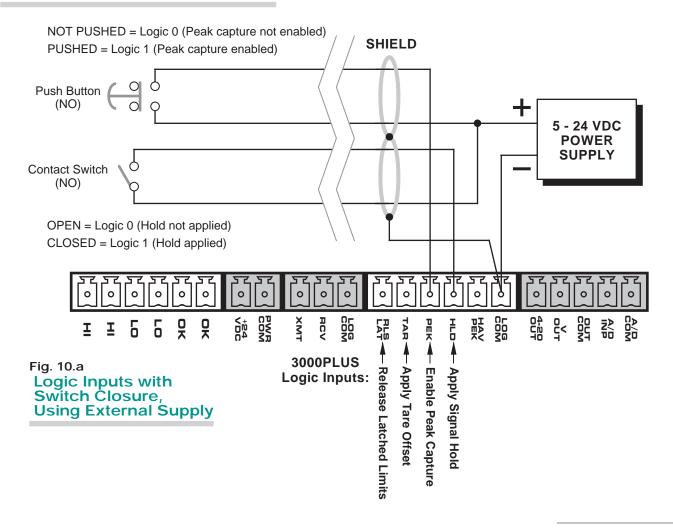

- HOLD ("HLD") when at the Logic 1 (+ 5 V) level, will cause the reading of the "auxiliary" DAC output (Channel 2) to be held (see Section 5.C for details)
- PEAK ("PEK") when at the Logic 1 (+ 5 V) level, will enable peak capture for Channel 2 (Section 5.B)
- TARE ("TAR) when at the Logic 1 (+ 5 V) level, will apply a tare offset to Channel 2, initially forcing it to the existing tared output value (Section 5.D)
- RELEASE LATCH ("RLS LAT") when at the Logic 1 (+ 5 V) level, will release ("unlatch") any and all currently latched limits and their respective indicators and relays (Section 5.E)

Fig. 10 3000PLUS Logic I/O Connections

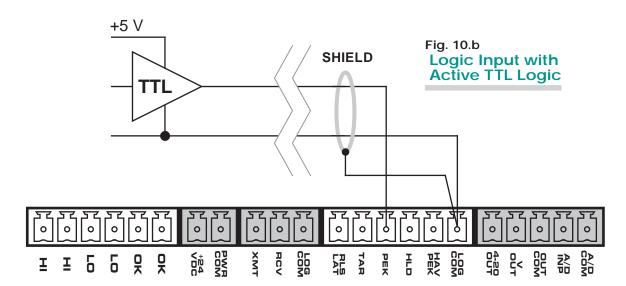
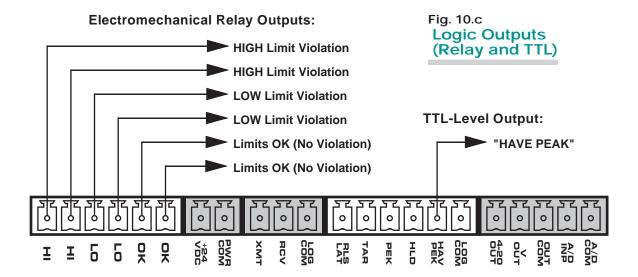

NOTE: These inputs must be *continuously true* for their respective functions to be maintained. Thus, for example, if TAR is only *momentarily* set to *Logic 1*, the resulting tare offset will be immediately removed from the Channel 2 reading on return of the TAR input to *Logic 0*. This also means that, as long as it is held at *Logic 1*, the RELEASE LATCH input will continuously defeat the latching of any subsequent limit alarms.

Fig. 10.a shows how the "PEK" and "HLD" inputs can be independently applied to the 3000PLUS instrument by means of a normally open push button and contact switch (respectively), powered by an external supply of nominal 5-24 VDC. Similar connections can be made

* For all four inputs, the *Logic 1* state is represented by nominal 5 VDC, and is the "true" state (indicated by the *name* of the input); the *Logic 0* state is represented by nominal 0 VDC, and is the "false" state. Thus, for example, when the "PEK" input is at *Logic 1*, peak capture is *enabled*. Logic inputs may be generated directly from dry contacts (switches, relays, etc.), as in Fig. 10.a, or from solid-state logic systems, as in Fig. 10.b. All inputs assume the *Logic 0* state in the absence of any connection.


for the other two inputs. You may also use active TTL logic, as illustrated in Fig. 10.b, to produce the desired logic condition.

RELAY AND TTL-LEVEL LOGIC OUTPUTS

The six LIMIT RELAY outputs shown in Fig. 10.c are continuously controlled by the existing limit-zone status of the "auxiliary" DAC output (Channel 2), if limit monitoring is currently enabled for the meter (see Section 5.E). There are two independent relays for each limit condition ("HI," "OK", and "LO"), which may be used to switch power for control action in all types of open-loop or ON-OFF closed-loop operations—for example, to actuate alarms or sorting devices, or to start up or shut down external processes.

As explained in Section 5.E, the contact polarity of the limit relays may be set to either NORMALLY OPEN or NORMALLY CLOSED (1) during meter configuration (Sections 3.B and 4); (2) during run-time via the Configurator's "Live Output Window" (Section 4.D); or (3) by direct application of the **POLARITY (POL)** command (Appendix A). A normally *open* relay will *close* on occurrence of the triggering limit condition (and vice versa).

The TTL-level "HAVE PEAK" output is produced when a peak value of Channel 2 has been captured, if peak capture is currently enabled for the meter (see Section 5.B).

3.A Introduction

You can set up and calibrate your 3000PLUS completely via the instrument's front-panel push buttons and display (as detailed in the following section). For setup and calibration using the **3KP Configurator** software supplied with the meter, see Section 4.

ENTERING A SETUP PARAMETER

The general sequence for entry of any given setup parameter is as follows:

- The two-to-six-character NAME of the parameter will first be displayed (e.g., ID, RANGE, LO LIM).
- 2. You will press

to "acknowledge" the parameter.

- The currently stored value of the parameter will be displayed (this will initially be its "factory default" value).
- 4. If you want to *keep* the currently displayed value for this parameter, you need only press **ENTER** once more to step to the next parameter in the setup sequence.
- 5. If you want to *change* the value of the parameter, what you do will depend on the type of parameter:
 - If there are two or more discrete selections for the parameter, you will press

repeatedly to cycle through the sequence of allowed values.

b. If the parameter can take any *numeric value* within a given range, you will use the

button to increment or decrement the currently displayed value (respectively) within that range (see below for details).

When the desired parameter value is displayed, press

once more to accept the value and step to the next parameter in the setup sequence.

NOTE: If you fail to press the **ENTER** button (or either the **UP** or **DOWN** button) within two minutes after you first press **ENTER** for a given parameter, the 3000PLUS display will alert you to this fact by alternating the parameter's current VALUE with its NAME.

USING THE UP/DOWN BUTTONS TO ADJUST A NUMERICAL PARAMETER

To *increase* a given parameter's displayed numerical value—in the *positive* direction, regardless of sign—you should press and hold down

using the method explained below, until the desired value is obtained.

To decrease a given parameter's displayed numerical value—in the negative direction, regardless of sign—you should press and hold down

until the desired value is obtained.

Changing an existing number to a new ("target") number requires that you create each digit of the target number separately, starting with the MOST SIGNIFICANT DIGIT (the leftmost digit of the number) and working back to the LEAST SIGNIFICANT DIGIT (the rightmost digit).

The best way to see how the **UP** and **DOWN** buttons work is to use an example: suppose that you want to change the instrument's **HI LIMIT** setpoint from its currently displayed value of "5.0" to a value of "1230.8."

 Press and hold down the **UP** button until a "1" appears in the *thousands* place (fifth digit from the right).

This is what you will see when you first press and hold the button:

- The displayed number's LEAST SIGNIFICANT DIGIT (LSD)—initially the "0" of "5.0"—will begin to rapidly and continuously increment by the "count" value determined by its current scaling (see Section 1.D). It will do this until it cycles from its highest value back to "0," at which point...
- The digit in the ones place (second from the right, initially "5") will immediately begin to increment by a count of "1." It will do this until it cycles from "9" back to "0," at which point...

- A "1" will appear in the *tens* place (third digit from the right), which will immediately begin to increment by a count of "1." It will do this until it cycles from "9" back to "0," at which point...
- A "1" will appear in the hundreds place (fourth digit from the right), which will immediately begin to increment by a count of "1." The first time it cycles from "9" back to "0,"...
- A "1" will appear in the thousands place (fifth digit from the right).

The fifth digit from the right would behave similarly, if you needed to increase the displayed number to the order of *ten thousand*. Note, however, that the only nonzero value the *sixth* digit from the right can ever have is "1" (see Section 1.D).

Because the digits change rapidly, it's easy to overshoot a target digit value. Therefore, when you're getting near that value, it's best to release the button momentarily—not longer than 2 seconds—and then repeat pressing the button rapidly without holding it down until you get to the target digit value. If you hold the "re-pressed" button down longer than two seconds, the incrementing (or decrementing) process will go back to the least significant digit (LSD).

Of course, you can correct an *upward* overshoot for a given digit by pressing the **DOWN** button, but you must do so within 2 seconds of releasing the **UP** button.

If you release the **UP** button and wait *more than 2* seconds before pressing it again (or pressing the **DOWN** button), the incrementing (or decrementing) process will go back to the least significant digit (LSD)—as we want it to do in Steps 2-4.

In the above example of a target number of "1230.8," you could prevent upward overshoot by momentarily releasing the **UP** button as soon as "7" appears in the *hundreds* place. You would then immediately press it rapidly three more times to get the desired "1" in the *thousands* place.

2. When you have a "1" in the thousands place, release the UP button, wait at least 2 seconds, and press and hold it again. The LSD will again begin to increment by the present "count" value. This time you will press and hold down the UP button until a "2" appears in the hundreds place (fourth digit from the right).

- 3. Wait at least 2 seconds, and then press and hold down the **UP** button until a "3" appears in the *tens* place (third digit from the right).
- 4. Wait at least 2 seconds, and then press and hold down the UP button until the LSD reaches "8." The ones digit (second from the right) need not be changed from its present value of "0."

NOTE: As the number being increased or decreased *crosses zero*, its sign will immediately change. It doesn't matter which particular digit you are in the process of incrementing or decrementing; as soon as the value of the displayed number (as a whole) passes through zero, the sign change will occur. The digit that was active before the sign change will still be active (and will continue to increase or decrease) after the sign change. For example, you might see the following sequence of displays, as the fourth digit from the right is being decremented by holding down the **DOWN** button:

VIEW ONLY MODE

In "VIEW ONLY" mode, the front-panel **SCROLL** and **UP/DOWN** buttons are disabled, so that the operator can sequentially *display* all values within the 3000PLUS's current setup configuration *without being able to change any of them* (the only exception is the instrument's **SECURITY CODE**, which will not be displayed in VIEW ONLY mode).

For entering VIEW ONLY mode, see Section 3.B, Steps 1.a through 1.d.

STEPPING THROUGH THE SETUP STAGES

By repeatedly pressing

you can quickly advance through the successive "stages" of the setup sequence (**SETUP**, **RANGE**, **FILTER**, etc., as announced by the front-panel indicator lights—see Fig. 2 and Section 1.D). Within each stage,

is used (as explained above) to step through the parameters of that stage. Remember that **ENTER** must

always be pressed *twice* for every parameter: once to acknowledge the parameter and once to accept its presently displayed value.

For example, after pressing **SETUP** five times, you should be at the **LIMITS** stage (as indicated by the **ST** and **LM** lights). Pressing **ENTER** will then display the current value of the first parameter within this stage: **LIMITS**, which can be either "ON" or "OFF" (as explained in the following section).

Note that

- You must be at the first parameter of a setup stage in order to use the SETUP button to step to the next stage.
- The SETUP stepping process works in both "CHANGE SETUP" and "VIEW ONLY" modes.

EXITING SETUP MODE

At any point within the setup procedure, pressing

and keeping it depressed for about 2 seconds will return the instrument to normal run-time operation.

3.B FRONT-PANEL SETUP PROCEDURE

To begin, press

(for exiting the setup procedure at any time, see Section 3.A)

SETUP STAGE 1: SECURITY AND MODULE IDENTIFICATION

ST (only) is lit.

When the 3000PLUS displays this . . .

Do this ...

IJI

If you want to be able to change the value(s) of one or more setup parameters, press

and proceed to Step 1.b.

If you want only to *view* the instrument's current setup configuration, press **SETUP** once more. This will step you to a display of **Stage 2** of the setup sequence (see "Stepping Through the Setup Sequence" in Section 3.A).

1.b. If you know the current instrument code (and it is not "0000"), use

to enter the required four-digit number.* Then press

- If the current instrument security code is "0000," you need only press ENTER.
- If the number you entered in Step 1.b is not the instrument's currently effective SECURITY CODE, it will display

To enter another number by returning to Step 1.a, press

To skip the code entry and simply view (but not change) the current setup configuration, answer "NO" to the "RETRY" query by pressing

(cont'd)

^{*} At the end of the front-panel setup procedure, the operator may change the present SECURITY CODE, if desired (see Step 7.d).

SETUP STAGE 1: SECURITY AND MODULE IDENTIFICATION (cont'd)

ST (only) is lit.

When the 3000PLUS displays this . . .

Do this . . .

alternating with

1.e. Press

to proceed to **Setup Stage 2** (next page). (The installed module has identified itself as a Model 5D64 DC Voltage instrument.)

SETUP STAGE 2: INPUT RANGE INFORMATION

ST and RG are lit.

When the 3000PLUS displays this . . .

Do this ...

RANGE

2.a. Press

ENTER

5D64 "RANGE" **SELECTIONS:**

0.05 DC 0.075DC 0.1 DC 0.15 DC 0.2 DC 0.3 DC 0.4 DC 0.5 DC 0.75 DC 1 DC 1.5 DC 2 DC 3 DC

> 4 DC 5 DC

7.5 DC 10 DC 15 DC **20 DC** 30 DC **40 DC** 50 DC **75 DC** 100 DC 150 DC 2.b. The current FULL-SCALE RANGE of the installed 5D64 module (in volts DC) will be displayed. Press

SCROLL

repeatedly to cycle through the list of allowed VDC values (shown left). When the desired range is displayed, press

NOTE: The listed range values are strictly "nominal." In selecting the most suitable setting for your application, you should consult the table of "practical ranges," below, which takes into account the effective 4% overlap that has been built into the scaling structure of the 5D64 Signal Conditioner Module.

Table 2 "Practical" 5D64 Range (RNG) Settings

"Practical" Range (VDC)	Range To Select (VDC)
0.0500 - 0.0779	0.05
0.0780 - 0.1039	0.075
0.1040 - 0.1559	0.1
0.1560 - 0.2079	0.15
0.2080 - 0.3119	0.2
0.3120 - 0.4159	0.3
0.4160 - 0.5199	0.4
0.5200 - 0.7799	0.5
0.7800 - 1.0399	0.75
1.0400 - 1.5599	1
1.5600 - 2.0799	1.5
2.0800 - 3.1199	2
3.1200 - 4.1599	3
4.1600 - 5.1999	4
5.2000 - 7.7999	5
7.8000 - 10.3999	7.5
10.4000 - 15.5999 15.6000 - 20.7999	10 15
20.8000 - 20.7999	20
31.2000 - 31.1999	30
41.6000 - 51.9999	40
52.0000 - 77.9999	50
78.0000 - 17.7777	75
104.0000 - 103.7777	100
156.0000 - 133.7777	150
207.7000	130

SETUP STAGE 2: INPUT RANGE INFORMATION (cont'd)

ST and **RG** are lit.

When the 3000PLUS displays this . . .

Do this ...

Thus, if the actual full-scale range of the source transducer lies *close to a given nominal range value*, it is most "practical" to select the range just *below* that nominal value. For example, if your *actual* transducer full-scale range is 10 VDC, it is most practical to select a *nominal* range of **7.5 VDC** (and NOT 10 VDC), since 10 lies with the "practical" range of "7.8000 - 10.3999." Note also that the *highest* "practical range" allows an actual transducer input as high as 239.985 VDC.

DEC PT NNNNNN

The BLINKING DECIMAL POINT (here shown to yield a number precise to *hundredths*) will appear in the position to which it was last set.

2.c. Press

2.d. You should now indicate the desired **DECIMAL-POINT PRECISION** for the instrument's standard ±5-volt scaled output (Channel No. 1), for the "auxiliary" DAC output (Channel No. 2), and for all setup values directly relating to the instrument's scaled engineering-units reading (including full-scale reading, limit setpoint and hysteresis values, peak "defeat" threshold," tared output, and all calibration numbers expressed in units):

Pressing

will cycle the decimal point to the left.

Pressing

will cycle the decimal point to the right.

2.e. Then press

OUT F5

2.f. Press

2.g. The 3000PLUS instrument's currently effective FULL-SCALE OUTPUT IN ENGINEERING UNITS value will be displayed, alternating with

Use

and

as explained in Section 3.A to adjust the displayed number to equal the desired full-scale output in engineering units (to the decimal-point precision specified in Step 2.f, above). This is the instrument reading that is to correspond to a full-scale analog output of +5.000 volts. The initial (default) value is "5000."

(cont'd)

SETUP STAGE 2: INPUT RANGE INFORMATION (cont'd)

ST and **RG** are lit.

When the 3000PLUS displays this . . .

Do this ...

NOTE: The **FULL-SCALE OUTPUT** ("**FSU**") parameter is critical for proper module CALIBRATION (Stage 4, below). It will also determine the "count" value for the 3000PLUS display's least significant digit (see Section 1.D).

2.h. Then press

to proceed to Setup Stage 3 (next page).

SETUP STAGE 3: FILTERS

ST and **FL** are lit.

When the 3000PLUS displays this . . .

Do this ...

AN FIL

3.a. Press

ENTER

5D64 ANALOG FILTER SELECTIONS:

0.2 Hz 2 Hz 20 Hz 0.2 kHz 2 kHz 3.b. The installed 5D64 module's current ANALOG FILTER corner frequency will be displayed. Press

SCROLL

repeatedly to cycle through the list of allowed values (shown left). When the desired filter frequency is displayed, press

ENTER

IG FIL

3.c. Press

3.d. The 3000PLUS instrument's currently effective **DISPLAY** (or "**DIGITAL**") FILTER value will be displayed. This is an integer from 0 through 9, indicating increasing amounts of digital smoothing (with "9" being the maximum amount, and "0" indicating that no digital smoothing is being applied to the display reading).

Press

repeatedly until the desired display filter value is displayed. You will not be able to display a number less than 0 or greater than 9. Then press

to proceed to Setup Stage 4 (next page).

SETUP STAGE 4: CALIBRATION

ST and CL are lit.

When the 3000PLUS displays this . . .

Do this . . .

[AL

4.a. Press

ENTER

5D64 CALIBRATION SELECTIONS*:

AB XDR (ABSOLUTE TRANSDUCER)

> AB VDC (ABSOLUTE VOLTAGE)

2 PT (TWO-POINT) 4.b. The currently specified **CALIBRATION METHOD** for the installed 5D64 module will be displayed. Press

SCROLL

repeatedly to cycle through the list of allowed values (shown left). When the desired method is displayed, press

To continue with calibration, go to the subsection below for the calibration method you have selected:

All XIR

For ABSOLUTE TRANSDUCER CALIBRATION, go to Section 4(AX), p. 3.11.*

AB VDC

For ABSOLUTE VOLTAGE CALIBRATION, go to Section 4(AV), p. 3.17.*

דק ק

For TWO-POINT (DEADWEIGHT) CALIBRATION, go to Section 4(T), p. 3.20.

*NOTE: For a general discussion of the three methods that may be employed for 5D64 CALIBRATION, see Section 4.E of this manual.

For ABSOLUTE calibration, you will generally select **AB XDR** ("TRANSDUCER" mode) when the 5D64's received input is to represent an analog of some parameter other than voltage-as would be the case if the instrument were connected to a DC-to-DC LVDT would for measurement of physical displacement.

For ABSOLUTE calibration, you will generally select be **AB VDC** ("**VOLTAGE**" mode) when the 5D64's received input is to represent voltage itself-as would be the case if the instrument were to be used as a scaled voltmeter.

Recommended Calibration Procedure

It is recommended when calibrating the instrument for the first time that you use the absolute (ABS) technique to establish the proper parameters for the meter in the area of full scale reading and the transducer's electrical sensitivity - which can be found on the transducer's calibration certificate.

Once the unit is calibrated to its electrical specification, then you may recalibrate using the 2-Point method to adjust for any variations in the system's measurement due to any mechanical or electrical offsets.

3. Front-Panel Configuration AND CALIBRATION

SETUP STAGE 4(AX): ABSOLUTE TRANSDUCER CALIBRATION

ST and CL are lit.

When the 3000PLUS displays this . . .

Do this ...

5N MIII

4(AX).a. Press

ENTER

5D64 SENSITIVITY MODE SELECTIONS:

V/UNIT ("Volts per Unit")

> **VFS** ("Volts Full Scale")

4(AX).b. The currently specified **SENSITIVITY MODE** for the installed 5D64 module will be displayed. Press

SCROLL

repeatedly to cycle through the list of allowed values (shown left). When the desired mode is displayed, press

NOTE: The sensitivity mode indicates the way you want the sensitivity of your source transducer to be expressed—either in "Volts per Unit" or "Volts Full Scale."

If you selected a SENSITIVITY MODE of "V/UNIT," you should now proceed directly to the entry of TRANSDUCER SENSITIVITY in Step 4(AX).e, below.

4(AX).c. Press

ENTER

4(AX).d. The last-entered TRANSDUCER FULL-SCALE RANGE will be displayed (having the decimal-point precision specified in Step 2.d). Use

as explained in Section 3.A to adjust the displayed number to the desired value. This will normally be the full-scale rating of the source transducer, as stated by the transducer manufacturer, expressed in desired measurement units (e.g., for a DC-to-DC LVDT, 500 (milli-inches, full-scale)).

Then press

ENTER

NOTE: TO AVOID POSSIBLE DAMAGE TO THE TRANSDUCER, YOU SHOULD NOT ENTER A TRANSDUCER FULL-SCALE RANGE THAT IS LESS THAN THE FULL-SCALE OUTPUT ("FSU") VALUE **ENTERED IN STEP 2.g.**

(cont'd)

3. Front-Panel Configuration and Calibration

SETUP STAGE 4(AX): ABSOLUTE TRANSDUCER CALIBRATION (cont'd)

ST and CL are lit.

When the 3000PLUS displays this . . .

Do this ...

XIR 5N IEC PT 000000

The BLINKING DECIMAL POINT (here shown to yield a number precise to *tenths*) will appear in the position to which it was last set.*

4(AX).e. Press

ENTER

4(AX).f. Press

4(AX).g. You should now indicate the desired **DECIMAL-POINT PRECISION** for the **TRANSDUCER SENSITIVITY** value you wish to enter*:

will cycle the decimal point to the left.

will cycle the decimal point to the right.

4(AX).h. Then press

4(AX).i. The last-entered **TRANSDUCER SENSITIVITY** will be displayed, alternating with either

V/UNIT or V F5

—depending on the **SENSITIVITY MODE** selected in Step 4(AX).b, above—and with the decimal-point resolution specified in the previous step.

Use

and

as explained in Section 3.A to adjust the displayed number to the desired value. This will normally be the *rated output sensitivity of the source transducer, expressed in either volts per unit or volts full scale,* as stated by the transducer manufacture. The number you enter here should always be a *positive nonzero number*.

Then press

ENTER

^{*} This decimal-point setting applies ONLY to the TRANSDUCER SENSI-TIVITY entry (Step 4(AX).i); it does not affect the resolution established in Step 2.d for the instrument's FULL-SCALE OUTPUT ("FSU").

SETUP STAGE 4(AX): ABSOLUTE TRANSDUCER CALIBRATION (cont'd)

ST and **CL** are lit.

When the 3000PLUS displays this . . .

Do this ...

*0*UT F5

4(AX).j. Press

4(AX).k. The desired **FULL-SCALE OUTPUT IN ENGINEERING UNITS** value which you entered in Step 2.g will be displayed (having the decimal-point precision specified in Step 2.d). If you now need to change this number, you may use

as explained in Section 3.A to do so. Since "ABSOLUTE TRANSDUC-ER" calibration was selected in Step 4.b, this is the instrument reading in ENGINEERING UNITS—normally other than VOLTS—that is to correspond to a full-scale analog output of +5.000 volts.

Then press

TO AVOID POSSIBLE DAMAGE TO THE TRANSDUCER, YOU SHOULD NOT ENTER A FULL-SCALE OUTPUT THAT IS GREATER THAN THE TRANSDUCER FULL-SCALE RANGE VALUE ENTERED IN STEP 4(AX).d.

The entered full-scale output should also be *greater than 20% of the value entered in Step 4(AX).d*, to avoid possible nonlinearity and hysteresis effects.

NOTE: The 3000PLUS will now calculate a MODULE SCALING FACTOR (MSF) from the three numbers you have just entered (as explained in Section 4.E and Appendix B, the MSF is used as a gain factor for the instrument's full-scale input range). If this calculation yields a gain that is too low (less than 1.0000, given the FULL-SCALE RANGE value established in Step 2.b), you will see a display of

ERROR alternating with RNG HI

If the calculated gain is too high (greater than 1.5999, given the current **RANGE** value), you will see a display of

ERROR alternating with RNG LO

Press

to acknowledge the high or low range condition.

SETUP STAGE 4(AX): ABSOLUTE TRANSDUCER CALIBRATION (cont'd)

ST and CL are lit.

When the 3000PLUS displays this . . .

Do this ...

NOTE:

Units shipped after March 2008 had the automatic RANGE selection feature disabled for the user to enter the correct RANGE value manually.

If the 3000PLUS is able to reset the **RANGE** value so that a "legal" **MSF** may be calculated from the present calibration numbers, it will display

RESET alternating with RANGE

If you want the RANGE value to be reset, press

to answer "YES" and proceed to Step 4(AX).I, below.

If you do not want the RANGE value to be reset, press

to answer "NO." You will be returned to Step 4(AX).c.

If the 3000PLUS is not able to reset the **RANGE** value so that a "legal" **MSF** may be calculated from the present calibration numbers, you will be automatically returned to Step 4(AX).c.

If you got a "RNG HI" (or "RNG LO") error, you may wish to exit and restart the setup procedure, this time selecting a lower (or higher) **FULL-SCALE RANGE** value in Step 2.b. Or you can continue with the calibration, but try to increase (or decrease) the effective sensitivity by increasing (or decreasing) either the TRANSDUCER SENSITIVITY entry or the FULL-SCALE OUTPUT entry, or by decreasing (or increasing) the TRANSDUCER FULL-SCALE RANGE entry (if applicable).

4(AX).I. Press

4(AX).m. The last-entered **OUTPUT ZERO CORRECTION** will be displayed (having the decimal-point precision specified in Step 2.d). Use

and

as explained in Section 3.A to adjust the displayed number to the desired value. This will normally be the desired correction ("offset") to be continuously applied to the 3000PLUS instrument's scaled output channels (1 and 2), expressed in measurement units (see Section 4.E for more information on the MODULE INPUT OFFSET (MIO) parameter). The number should be entered with the desired plus/minus polarity: a positive offset value will be algebraically added to the output signal; a negative offset value will be algebraically subtracted. The initial (default) setting is always zero.

SETUP STAGE 4(AX): ABSOLUTE TRANSDUCER CALIBRATION (cont'd)

ST and CL are lit.

When the 3000PLUS displays this . . .

Do this . . .

Then press

ENTER

NOTE:

If you encounter this error, you should check to insure your sensor input is near its electrical zero position and the proper Range is selected. **NOTE:** The 3000PLUS will now calculate a **MODULE INPUT OFFSET (MIO)** (as explained in Section 4.E and Appendix B). If this calculation yields an offset that is *too high* (absolute value greater than 20%), you will see a display of

ERROR alternating with ZRO HI

Press

to acknowledge the error message. You will be automatically returned to Step 4(AX).c. Repeat the absolute calibration procedure, but enter a smaller OUTPUT ZERO CORRECTION (or a larger FULL-SCALE OUTPUT).

-5YM

4(AX).n. The 3000PLUS lets you modify the slope of the output in the negative domain in order to make it symmetrical with the positive slope (see Section 4.E for more details regarding the **NEGATIVE SYMMETRY (SYM)** parameter). If you want to apply a **NEGATIVE SYMMETRY CORRECTION**, answer "YES" by pressing

If no symmetry correction is required, answer "NO" by pressing

and proceed to Setup Stage 5 (p. 3.27).

4(AX).o. The display will now show the value you entered in Step 4(AX).k, above (the desired **FULL-SCALE OUTPUT IN ENGINEERING UNITS**), but with opposite sign.

Use

as explained in Section 3.A to to adjust the displayed number (if necessary) to equal the *desired full-scale output reading in the negative domain*, expressed in measurement units. The number you enter here determines the required symmetry correction factor. If no symmetry correction is desired, you need not change the initially displayed

SETUP STAGE 4(AX): ABSOLUTE TRANSDUCER CALIBRATION (cont'd)

ST and CL are lit.

When the 3000PLUS displays this . . .

Do this ...

value. **NOTE**: You will not be allowed to enter a number with an absolute value greater than 2% of the **FULL-SCALE OUTPUT** entered in Step 4(AX).k.

Then press

to proceed to Setup Stage 5 (p. 3.27).

SETUP STAGE 4(AV): ABSOLUTE VOLTAGE CALIBRATION

ST and CL are lit.

When the 3000PLUS displays this . . .

Do this ...

*0*UT F5

4(AV).a. Press

4(AV).b. The desired **FULL-SCALE OUTPUT IN ENGINEERING UNITS** value which you entered in Step 2.g will be displayed (having the decimal-point precision specified in Step 2.d). If you now need to change this number, you may use

as explained in Section 3.A to do so. Remember: Since "ABSOLUTE VOLTAGE" calibration was selected in Step 4.b, this is the instrument VOLTS reading that is to correspond to a full-scale analog output of +5.000 volts.

Then press

NOTE: The 3000PLUS will now calculate a MODULE SCALING FACTOR (MSF) from the three numbers you have just entered (as explained in Section 4.E and Appendix B, the MSF is used as a gain factor for the instrument's full-scale input range). If this calculation yields a gain that is too low (less than 1.0000, given the FULL-SCALE RANGE value established in Step 2.b), you will see a display of

ERROR alternating with RNG HI

If the calculated gain is too high (greater than 1.5999, given the current **RANGE** value), you will see a display of

ERROR alternating with RNG LO

Press

to acknowledge the high or low range condition.

If the 3000PLUS is able to reset the **RANGE** value so that a "legal" **MSF** may be calculated from the present calibration numbers, it will display

RESET alternating with RANGE

(cont'd)

NOTE:

Units shipped after March 2008 had the automatic RANGE selection feature disabled for the user to enter the correct RANGE value manually.

SETUP STAGE 4(AV): ABSOLUTE VOLTAGE CALIBRATION (cont'd)

ST and CL are lit.

When the 3000PLUS displays this . . .

Do this ...

If you want the **RANGE** value to be reset, press

to answer "YES" and proceed to Step 4(AV).c, below.

If you do not want the RANGE value to be reset, press

to answer "NO." You will be returned to Step 4(AV).a.

If the 3000PLUS is not able to reset the **RANGE** value so that a "legal" **MSF** may be calculated from the present calibration numbers, you will be automatically returned to Step 4(AV).a.

If you got a "RNG HI" (or "RNG LO") error, you may wish to exit and restart the setup procedure, this time selecting a lower (or higher) **FULL-SCALE RANGE** value in Step 2.b. Or you can continue with the calibration, but try to increase (or decrease) the effective sensitivity by increasing (or decreasing) the FULL-SCALE OUTPUT entry.

4(AV).c. Press

4(AV).d. The last-entered **OUTPUT ZERO CORRECTION** will be displayed (having the decimal-point precision specified in Step 2.d). Use

and

as explained in Section 3.A to adjust the displayed number to the desired value. This will normally be the *desired correction ("offset") to be continuously applied to the 3000PLUS instrument's scaled output channels (1 and 2), expressed in measurement units (see Section 4.E for more information on the MODULE INPUT OFFSET (MIO) parameter). The number should be entered with the desired plus/minus polarity: a <i>positive* offset value will be algebraically *added* to the output signal; a *negative* offset value will be algebraically *subtracted*. The initial (default) setting is always zero.

Then press

NOTE: The 3000PLUS will now calculate a **MODULE INPUT OFFSET (MIO)** (as explained in Section 4.E and Appendix B). If this calculation yields an offset that is *too high* (absolute value greater than 20%), you will see a display of

SETUP STAGE 4(AV): ABSOLUTE VOLTAGE CALIBRATION (cont'd)

ST and CL are lit.

When the 3000PLUS displays this . . .

Do this . . .

NOTE:

If you encounter this error, you should check to insure your sensor input is near its electrical zero position and the proper Range is selected. ERROR alternating with ZRO HI

Press

to acknowledge the error message. You will be automatically returned to Step 4(AV).a. Repeat the absolute calibration procedure, but enter a smaller OUTPUT ZERO CORRECTION (or a larger FULL-SCALE OUTPUT).

-5YM

4(AV).e. The 3000PLUS lets you modify the slope of the output in the negative domain in order to make it symmetrical with the positive slope (see Section 4.E for more details regarding the **NEGATIVE SYMMETRY** (SYM) parameter). If you want to apply a **NEGATIVE SYMMETRY** CORRECTION, answer "YES" by pressing

If no symmetry correction is required, answer "NO" by pressing

and proceed to Setup Stage 5 (p. 3.27).

4(AV).f. The display will now show the value you entered in Step 4(AV).b, above (the desired **FULL-SCALE OUTPUT IN ENGINEERING UNITS**), but with opposite sign.

Use

as explained in Section 3.A to to adjust the displayed number (if necessary) to equal the *desired full-scale output reading in the negative domain*, expressed in measurement units. The number you enter here determines the required symmetry correction factor. If no symmetry correction is desired, you need not change the initially displayed value. **NOTE**: You will not be allowed to enter a number with an absolute value greater than 2% of the **FULL-SCALE OUTPUT** entered in Step 4(AV).b.

Then press

to proceed to Setup Stage 5 (p. 3.27).

SETUP STAGE 4(T): TWO-POINT CALIBRATION

ST and CL are lit.

When the 3000PLUS displays this . . .

Do this . . .

4(T).a. Before you can enter your first calibration point (ZERO POINT), you must establish your transducer "zero" condition (less than 20% of full scale). Normally, you would either remove all load from the source transducer or apply a small but precisely known amount of load that is to be continuously "tared" from the final measurement. When the transducer is fully "unloaded," press

alternating with the

"LIVE" SCALED OUTPUT READING (CHANNEL 1)* 4(T).b. Use

nd

as explained in Section 3.A to adjust the displayed number (if necessary) to the desired **ZERO POINT OUTPUT READING**, expressed in measurement units. The number you enter here should be less than 20% of the **FULL-SCALE OUTPUT IN ENGINEERING UNITS** which you entered in Step 2.g.

Then press

If you have *not* changed the displayed number (alternating with "CAL 1") via the **UP/DOWN** buttons, you should proceed directly to entry of the "CAL 2" point in Step 4(T).c, below.

If, however, you have changed the displayed zero-point ("CAL 1") number, the 3000PLUS will calculate a new MODULE INPUT OFFSET (MIO), based on the entered reading, the current full-scale output setting, and the FULL-SCALE RANGE entered in Step 2.b—see Section 4.E of this manual for more information on the MIO parameter.

If this calculation yields an allowable offset value, that value will be applied to the output, and you will see a display of

alternating with the "LIVE" SCALED OUTPUT READING.

If the reading that is now displayed corresponds sufficiently to your desired **ZERO POINT OUTPUT READING**, press

and proceed to Step 4(T).c.

(cont'd)

* The 3000PLUS instrument's MOD-ULE INPUT OFFSET (MIO) will be automatically reset to "00.00" (zero) before the "live" output reading is invoked. The previously entered CAL1 number may appear for a second or two while this occurs.

SETUP STAGE 4(T): TWO-POINT CALIBRATION (cont'd)

ST and CL are lit.

When the 3000PLUS displays this . . .

Do this ...

If the displayed zero-point reading is not satisfactory, you may perform additional "CAL 1" adjustment by answering "NO" to the "OK?" query—that is, by pressing

—which will return you to Step 4(T).a.*

If the offset calculation yields a value that is *too high* (an absolute value greater than 20%), you will see a display of

ERROR alternating with ERL IHI

Press

to acknowledge the error message. The instrument will now determine whether or not the **RANGE** setting (Step 2.b) can be adjusted to allow the amount of input offset specified by the calculated value.

If a RANGE readjustment is possible, the 3000PLUS will display

RESET alternating with RANGE

If you want the **RANGE** value to be appropriately reset, press

ENTER

to answer "YES." The new **MODULE INPUT OFFSET** will be applied to the instrument's output—along with the new **RANGE** setting—and you will see a display of

 $\square \bowtie$

alternating with the "LIVE" SCALED OUTPUT READING. As explained above, you can answer "YES" to the "OK?" query (If the reading that is now displayed corresponds sufficiently to your desired ZERO POINT OUTPUT READING) by pressing ENTER, or you can answer "NO" by pressing the DOWN button (thus returning to Step 4(T).a).*

If you do not want the RANGE value to be reset, press

to answer "NO." You will be returned to Step 4(T).a.

If the 3000PLUS is not able to adjust the **RANGE** setting to accommodate the calculated offset, you will be automatically returned to Step 4(T).a. Repeat the procedure, but enter a smaller **ZERO POINT** value.

(cont'd)

NOTE:

If you encounter this error, you should check to insure your sensor input is near its electrical zero position and the proper Range is selected.

* In this case, the 3000PLUS instrument's MODULE INPUT OFFSET (MIO) is NOT automatically reset to "00.00" (zero)—see note on the previous page. When displayed once more, the zero-point reading will reflect the last change you made to this number, so that it can be further adjusted via the UP/DOWN buttons.

SETUP STAGE 4(T): TWO-POINT CALIBRATION (cont'd)

ST and CL are lit.

When the 3000PLUS displays this . . .

Do this ...

4(T).c. Before you can enter your second calibration point (SPAN POINT), you must establish your transducer "span" condition by applying a precisely known amount of positively directed load between 80% and 100% of full scale. When the transducer is positively "loaded," press

alternating with the

"LIVE" SCALED OUTPUT READING (CHANNEL 1) 4(T).d. Use

as explained in Section 3.A to adjust the displayed number (if necessary) to the desired **SPAN POINT OUTPUT READING**, expressed in measurement units. The number you enter here will ordinarily be less than or equal to the **FULL-SCALE OUTPUT IN ENGINEERING UNITS** which you entered in Step 2.g.

Then press

If you have *not* changed the displayed number (alternating with "CAL 2") via the **UP/DOWN** buttons, you should proceed directly to the optional entry of the "–SYM" correction in Step 4(T).f, below.

If, however, you have changed the displayed span-point ("CAL 2") number, the 3000PLUS will calculate a new MODULE SCALING FACTOR (MSF), based on the entered reading, the current full-scale output setting, and the FULL-SCALE RANGE entered in Step 2.b—see Section 4.E of this manual for more information on the MSF parameter. An appropriate adjustment of the effective MODULE INPUT OFFSET (MIO) initially determined in Step 4(T).b will also be calculated.

If the gain calculation yields an allowable gain value—and if the recalculated offset value is also allowed—those values will be applied to the instrument's output, and you will see a display of

alternating with the "LIVE" SCALED OUTPUT READING.

If the reading that is now displayed corresponds sufficiently to your desired **SPAN POINT OUTPUT READING**, press

and proceed to the "RECAL?" query in Step 4(T).e, below.

SETUP STAGE 4(T): TWO-POINT CALIBRATION (cont'd)

ST and CL are lit.

When the 3000PLUS displays this . . .

Do this ...

If the displayed span-point reading is not satisfactory, you may perform additional "CAL 2" adjustment by answering "NO" to the "OK?" query—that is, by pressing

-which will return you to Step 4(T).c.

If the gain calculation yields a value that is out of its legal limits for a 5D64 conditioner module (i.e., either less than 1.0000 or greater than 1.5999), you will see a display of

ERROR

alternating with, respectively,

RNG HI or RNG LO

Press

to acknowledge the error message.* The instrument will now determine whether or not the **RANGE** setting (Step 2.d) can be adjusted to allow the amount of gain specified by the calculated value.

If a RANGE readjustment is possible, the 3000PLUS will display

RESET alternating with RANGE

If you want the RANGE value to be appropriately reset, press

to answer "YES." The new MODULE SCALING FACTOR will be applied to the instrument's output—along with the new RANGE setting and the readjusted MODULE INPUT OFFSET—and you will be returned to Step 4(T).a for re-entry of the ZERO POINT ("CAL 1"), after you have "unloaded" the transducer once more.**

If you do not want the **RANGE** value to be reset, press

to answer "NO." You will be returned to Step 4(T).c for re-entry of the SPAN POINT ("CAL 2").

If the 3000PLUS is not able to adjust the **RANGE** setting to accommodate the calculated gain, you will be automatically returned to Step

NOTE:

Units shipped after March 2008 had the automatic RANGE selection feature disabled for the user to enter the correct RANGE value manually.

- * It is also possible that, while the calculated scaling factor is acceptable, the recalculated offset term (MIO) is not. In this case, the instrument will display "ERROR" alternating with "ZRO HI." Press ENTER to acknowledge the error message and return to Step 4(T).a for re-entry of the ZERO POINT ("CAL 1"), after you have "unloaded" the transducer once more. In this case, the offset will have been automatically set to the highest allowed value (20%).
- ** A complete recalibration is required because of the change in the RANGE setting.

SETUP STAGE 4(T): TWO-POINT CALIBRATION (cont'd)

ST and CL are lit.

When the 3000PLUS displays this . . .

Do this ...

RECAL

 $4(\mbox{T}).c.$ Repeat the procedure, but adjust your "span" input to produce a lower or higher reading.

4(T).e. After you enter a new **SPAN POINT** ("CAL 2") value in Step 4(T).d and press **ENTER** to answer "YES" to the "OK?" query, you will be asked whether you want to RECALIBRATE. If you do NOT wish to repeat the two-point calibration procedure—starting with the **ZERO POINT** and **SPAN POINT** you have already "OKed"—answer "NO" by pressing

and proceed to Step 4(T).f.

If you DO wish to recalibrate, answer "YES" by pressing

-which will return you to Step 4(T).a.*

-5YM

4(T).f. The 3000PLUS lets you modify the slope of the output in the negative domain in order to make it symmetrical with the positive slope (see Section 4.E for more details regarding the NEGATIVE SYMMETRY (SYM) parameter). If you want to apply a NEGATIVE SYMMETRY CORREC-TION, answer "YES" by pressing

and proceed to Step 4(T).g.

If no symmetry correction is required, answer "NO" by pressing

and proceed to Step 4(T).i.

--L*[]*A]]

4(T).g. Before you can enter the symmetry correction, you must establish your transducer "negative span" condition by applying a precisely known amount of negatively directed load between 80% and 100% of full scale. When the transducer is negatively "loaded," press

In this case, the 3000PLUS instrument's MODULE INPUT OFFSET (MIO) is NOT automatically reset to "00.00" (zero)—see note on p. 3.20. When displayed once more, the zero-point reading will reflect the last change you made to this number.

SETUP STAGE 4(T): TWO-POINT CALIBRATION (cont'd)

ST and CL are lit.

When the 3000PLUS displays this . . .

Do this . . .

-5YM

4(T).h. Use

alternating with the

"LIVE" SCALED OUTPUT READING (CHANNEL 1)

as explained in Section 3.A to adjust the displayed number until the desired **NEGATIVE OUTPUT READING** is obtained (correctly representing the present amount of negative load, expressed in measurement units). **NOTE**: You will not be allowed to change the displayed number by more than 2% of its absolute value.

Then press

+LIN

4(T).i. The 3000PLUS lets you apply a midscale **POSITIVE LINEARITY COR-RECTION**. Adjusting the 3000PLUS instrument's **POSITIVE LINEARITY** (LPN) factor—a percentage of midscale output not greater than ±2%—is useful in cases where the output linearity error increases and decreases smoothly (with no inflections) with increasing values of input, as is commonly the case with conventional LVDT sensors. If you want to apply the positive correction factor, answer "YES" by pressing

and proceed to Step 4(T).j.

If no positive linearity correction is required, answer "NO" by pressing

and proceed to Step 4(T).I.

+MI]]F5

4(T).j. Before you can enter the correction, you must apply input loading in the positive direction to approximately *half* of the transducer's nominal full-scale rating. When this has been done, press

+LIN

alternating with the

"LIVE" SCALED OUTPUT READING (CHANNEL 1) 4(T).k. Use

and

as explained in Section 3.A to adjust the displayed number until the desired **POSITIVE MIDSCALE OUTPUT READING** is obtained (correctly representing the present amount of positive load, expressed in measurement units). **NOTE**: You will not be allowed to change the displayed number by more than 2% of its absolute value.

SETUP STAGE 4(T): TWO-POINT CALIBRATION (cont'd)

ST and CL are lit.

When the 3000PLUS displays this . . .

Do this ...

Then press

ENTER

-LIN

4(T).I. The 3000PLUS lets you apply a midscale NEGATIVE LINEARITY COR-RECTION. Like LNP (above), the 3000PLUS instrument's NEGATIVE LINEARITY (LNN) factor is a percentage of midscale output not greater than ±2%. If you want to apply the negative correction factor, answer "YES" by pressing

and proceed to Step 4(T).m.

If no negative linearity correction is required, answer "NO" by pressing

and proceed to Setup Stage 5 (next page).

-MIIIF5

4(T).m. Before you can enter the correction, you must apply input loading in the negative direction to approximately *half* of the transducer's nominal full-scale rating. When this has been done, press

-LIN

alternating with the

"LIVE" SCALED OUTPUT READING (CHANNEL 1) 4(T).n. Use

and

as explained in Section 3.A to adjust the displayed number until the desired **NEGATIVE MIDSCALE OUTPUT READING** is obtained (correctly representing the present amount of positive load, expressed in measurement units). **NOTE**: You will not be allowed to change the displayed number by more than 2% of its absolute value.

Then press

and proceed to Setup Stage 5 (next page).

SETUP STAGE 5: LIMITS

ST and **LM** are lit.

When the 3000PLUS displays this . . .

Do this ...

LIMITS

5.a. Press

ENTER

"LIMITS ENABLE" SELECTIONS:

> ON OFF

5.b. The instrument's current **LIMITS ENABLE** status will be displayed: "ON" or "OFF." In the limits "ON" state, the 3000PLUS will continuously monitor the "auxiliary" DAC output (Channel 2) for conformance to the currently specified high/low limit values—and will activate appropriate relays on detection of limit violation (for LOGIC I/O connections, see Section 2.E).

Press

to toggle between the two allowed states. When the desired limits state is displayed, press

NOTE: If you choose to *disable* limit monitoring (by selecting "OFF"), you will go directly to **Setup Stage 6** (p. 3.32), since the following limit-related parameters are now immaterial.

5.c. Press

"LIMITS SECURITY" SELECTIONS:

> ON OFF

ENTER

5.d. The instrument's current **LIMITS SECURITY** status will be displayed: "ON" or "OFF." When limits security is "ON," the 3000PLUS local operator will not be allowed to display and adjust limit values during normal run-time operation (see Sections 1.E and 5.E for details).

Press

to toggle between the two allowed states. When the desired limits security setting is displayed, press

SETUP STAGE 5: LIMITS (cont'd)

ST and LM are lit.

When the 3000PLUS displays this . . .

Do this . . .

LATEH

5.e. Press

ENTER

"LIMITS LATCH MODE" SELECTIONS:

ON OFF 5.f. The instrument's current **LIMITS LATCH MODE** status will be displayed: "ON" or "OFF." In LATCHING mode (the "ON" state), when a high-limit or low-limit violation is detected, that violation condition will remain in effect—regardless of the subsequent behavior of the auxiliary output reading—until limits are "released" (see Section 5.E for the different ways you can accomplish this). When limits are NONLATCHING (the "OFF" state), any detected limit violation condition will cease to occur as soon as the auxiliary output reading leaves the corresponding limit zone (or associated hysteresis deadband).*

Press

SCROLL

to toggle between the two allowed states. When the desired latch mode state is displayed, press

ENTER

POL

5.g. Press

ENTER

"LIMITS POLARITY" SELECTIONS:

NC NO 5.h. The instrument's current **LIMITS POLARITY** status will be displayed: NOR-MALLY CLOSED ("NC") or NORMALLY OPEN ("NO"). This selection sets the contact polarity of the 3000PLUS instrument's limit output relays (for LOGIC I/O connections, see Section 2.E).

Press

SCROLL

to toggle between the two allowed states. When the desired polarity state is displayed, press

ENTER

^{*} Latching also applies to the "BETWEEN" ("OK") limit zone. See Section 5.E for a complete discussion of 3000PLUS limit monitoring.

SETUP STAGE 5: LIMITS (cont'd)

ST and LM are lit.

When the 3000PLUS displays this . . .

Do this ...

LO LIM

5.i. Press

- 5.j. The instrument's currently effective **LOW LIMIT** setpoint value will be displayed (having the decimal-point precision specified in Step 2.f). The LOW LIMIT setting and HIGH LIMIT setting (see below) define the 3000PLUS's three distinct LIMIT ZONES, as diagramed in Fig. 21 (Section 5.E)*:
 - "LESS THAN" ZONE ("LO"): the reading for Channel 2 is less than the current Low Limit
 - "BETWEEN" ZONE ("OK"): the reading for Channel 2 is greater than or equal to the current Low Limit and less than or equal to the current High Limit
 - "GREATER THAN" ZONE ("HI"): the reading for Channel 2 is greater than the current High Limit

The "LESS THAN" or "GREATER THAN" zones may be effectively extended for *nonlatching* limits by means of a user-specified HYSTERESIS DEAD-BAND (see below).

Use

as explained in Section 3.A to adjust the displayed number until the desired limit value is obtained (expressed in measurement units). **NOTE:** You will not be allowed to enter a LOW LIMIT that is greater than the current HIGH LIMIT (see below).**

Then press

LO HYS

5.k. Press

- For a complete discussion of limit monitoring, see Section 5.E. For front-panel limit status indication, see Section 1.D.
- ** Also, the absolute value of the LOW LIMIT value should not be greater than that of the FULL-SCALE OUTPUT IN ENGINEER-ING UNITS entered in Step 2.i.
- 5.I. The instrument's currently effective **LOW LIMIT HYSTERESIS** value will be displayed (having the decimal-point precision specified in Step 2.f). This parameter lets you define a HYSTERESIS window (or "deadband") immediately above the "LESS THAN" LIMIT ZONE defined by the current LOW LIMIT setpoint value (see Fig. 21, Section 5.E). The hysteresis deadband is to prevent low-level signal noise from toggling the low-limit relays on and off while the reading of Channel 2 remains in the neighborhood of the setpoint.

(cont′d)

SETUP STAGE 5: LIMITS (cont'd)

ST and M are lit.

When the 3000PLUS displays this . . .

Do this ...

Use

as explained in Section 3.A to adjust the displayed number until the desired low limit hysteresis value is obtained (expressed in measurement units). Enter a value of zero ("0," "0.0," etc.) to indicate no deadband. NOTE: You will not be allowed to enter a negative number, or a number that is greater than the difference between the existing HIGH LIMIT and LOW LIMIT values.

Then press

HI LIM

5.m. Press

5.n. The instrument's currently effective HIGH LIMIT setpoint value will be displayed (having the decimal-point precision specified in Step 2.f). See Step 5.h, above, for an explanation of limit zones.

Use

and

as explained in Section 3.A to adjust the displayed number until the desired limit value is obtained (expressed in measurement units). NOTE: You should not enter a HIGH LIMIT that is less than the current LOW LIMIT.*

HI HYS

5.o. Press

5.p. The instrument's currently effective **HIGH LIMIT HYSTERESIS** value will be displayed (having the decimal-point precision specified in Step 2.f). This parameter lets you define a HYSTERESIS window (or "deadband") immediately below the "GREATER THAN" LIMIT ZONE defined by the current HIGH LIMIT setpoint value (see Fig. 21, Section 5.E). The hysteresis deadband is to prevent low-level signal noise from toggling the high-limit relays on and off while the reading of Channel 2 remains in the neighborhood of the setpoint.

Also, the absolute value of the HIGH LIMIT value should not be greater than that of the FULL-SCALE OUTPUT IN ENGINEER-ING UNITS entered in Step 2.i.

SETUP STAGE 5: LIMITS (cont'd)

ST and **LM** are lit.

When the 3000PLUS displays this . . .

Do this ...

Use

as explained in Section 3.A to adjust the displayed number until the desired high limit hysteresis value is obtained (expressed in measurement units). Enter a value of zero ("0," "0.0," etc.) to indicate no deadband. **NOTE**: You will not be allowed to enter a negative number, or a number that is greater than the *difference between the existing HIGH LIMIT and LOW LIMIT values*.

Then press

to proceed to Setup Stage 6 (next page).

SETUP STAGE 6: "AUXILIARY" OUTPUT

ST and **PK** are lit.

When the 3000PLUS displays this . . .

Do this . . .

CHAN 2

6.a. Press

ENTER

"PEAK MODE" SELECTIONS:

> P PEAK N PEAK

6.b. The meter's current **PEAK CAPTURE MODE** will be displayed: POSITIVE PEAK ("P PEAK") or NEGATIVE PEAK ("N PEAK"). Here, "positive" peak operation refers to the analog capture and hold of the *maximum* (most positive) excursion of the "auxiliary" DAC output (Channel 2), while "negative" peak operation refers to the capture of Channel 2's *minimum* (most negative) excursion. The 3000PLUS will be placed in the selected mode whenever peak capture is enabled by means of a logic input at the rear **PEAK** terminal (for a complete discussion of peak capture operation, with diagrams, see Section 5.B; for LOGIC I/O connections, see Section 2.E).

Press

SCROLL

to toggle between the two allowed modes. When the desired peak capture mode is displayed, press

ENTER

PK DEF

6.c. Press

ENTER

6.d. The instrument's current PEAK "DEFEAT" THRESHOLD will be displayed (having the decimal-point precision specified in Step 2.f). By means of this parameter, you can set up a "peak-defeat" input threshold in order to prevent induced low-level signal noise from triggering a "HAVE PEAK" condition, when analog peak capture is enabled (see Fig. 18, Section 5.B). Within the low-level deadband defined by this threshold, the output will simply track the input, regardless of signal behavior.

Use

and

as explained in Section 3.A to adjust the displayed number until the desired peak "defeat" threshold value is obtained (expressed in measurement units). **NOTE:** You will not be allowed to enter a negative number.*

Then press

(cont'd)

* Also, the threshold value should not be greater than 20% of the FULL-SCALE OUTPUT IN ENGI-NEERING UNITS entered in Step 2.i.

SETUP STAGE 6: "AUXILIARY" OUTPUT (cont'd)

ST and **PK** are lit.

When the 3000PLUS displays this . . .

Do this . . .

6.e. Press

6.f. The instrument's current **PEAK** "**BACKOUT**" **THRESHOLD** will be displayed. When analog peak capture is enabled, a positive or negative "capture"—and the consequent "HAVE PEAK" logic output—will occur when the "auxiliary" output signal *differs* from the input by more than a preset threshold amount (called the *peak* "backout"). The presence of the backout threshold prevents low-amplitude signal noise from toggling the "HAVE PEAK" output on and off (see Fig. 16, Section 5.B).

The backout threshold is expressed in *A/D counts* (an integral number from 1 through 999). The initial (default) setting is "256" (counts), which corresponds to a signal change of approximately 0.8% of full scale. For best results, the backout setting should not be less than "40" (counts), corresponding to a signal change of approximately 0.1% of full scale.

Use

as explained in Section 3.A to adjust the displayed number until the desired peak "backout" threshold value is obtained (expressed in A/D counts).

Then press

6.g. Press

6.h. The instrument's current **LEAK RATE** will be displayed.* This is the rate at which every signal value held by the "auxiliary" DAC output (Channel 2) will decay, in *percent of full scale per second*. The ability to adjust the leak rate is useful in the measurement of *peak trends* in very fast cyclic processes, and permits capture of rapidly successive peaks of similar amplitude without having to provide a "reset" for each peak (see Fig. 19, Section 5.B).

* The leak rate will always be displayed with a resolution of hundredths (of a percent).

SETUP STAGE 6: "AUXILIARY" OUTPUT (cont'd)

ST and **PK** are lit.

When the 3000PLUS displays this . . .

Do this ...

Use

and

as explained in Section 3.A to adjust the displayed number until the desired leak rate value is obtained (expressed in percent of full scale per second). **NOTE:** You will not be allowed to enter a negative number, or a number greater than 3.50 (%).

Then press

TARE

6.i. Press

6.j. The instrument's current "TARED" OUTPUT value will be displayed (having the decimal-point precision specified in Step 2.f). This parameter determines the value of a nonzero *tare offset* for the "auxiliary" DAC output (Channel 2)—if, for example, you wanted to subtract out the container weight in batch-weighing operations or establish an arbitrary zero reference in comparator gaging operations (among many other applications).

Use

and

as explained in Section 3.A to adjust the displayed number until the you obtain the engineering-units reading you wish the auxiliary output to display—regardless of the existing transducer input—the next time the 3000PLUS is placed in the TARE = ON mode.* To actually apply the specified tare offset to the output reading (that is, to actually turn "ON" the tare function), you must apply a logic-level input at the instrument's rear **TARE** terminal (for a complete discussion of tare operation, with diagram, see Section 5.D; for LOGIC I/O connections, see Section 2.E).

Then press

to proceed to Setup Stage 7 (next page).

^{*} The absolute value of the desired "TARED" OUTPUT reading should not be greater than that of the FULL-SCALE OUTPUT IN ENGI-NEERING UNITS entered in Step 2.i.

SETUP STAGE 7: VOLTAGE OUTPUT

ST and AN are lit.

When the 3000PLUS displays this . . .

Do this ...

CHAN 3

7.a. Press

ENTER

FULL-SCALE VOLTAGE OUTPUT SELECTIONS:

> 5 V 10 V

7.b. The instrument's current **FULL-SCALE VOLTAGE OUTPUT**—that is, the full-scale range of the scaled analog output (Channel 3)—will be displayed: "5 V" or "10 V." For rear-terminal connections involving the voltage output (including 4-20 mA conversion), see Section 2.D.

Press

to toggle between the two allowed ranges. When the desired full-scale output range is displayed, press

ENTER

III

7.c. Press

7.d. The instrument's current four-digit **SECURITY CODE** will be displayed.* This is the number (initially "0000") that must be entered in Step 1.b in order to make changes to the instrument configuration via the front-panel buttons.

If you do not want to change the displayed code, press **ENTER** to exit the front-panel setup procedure.

If you want to change the code number, use

as explained in Section 3.A to adjust the displayed number until the desired security code is obtained (any number from "0000" through "9999").

Then press

to exit the front-panel setup procedure.

The SECURITY CODE will not be displayed, however, when you are in "VIEW ONLY" mode (see Steps 1.a through 1.d). In this mode, pressing ENTER after display of the FULL-SCALE VOLTAGE OUT-PUT parameter will cause you to exit the setup display.

4.A Using the 3000PLUS Configurator Software

WHAT IS THE 3KP CONFIGURATOR?

Employing the run-time version of Microsoft® Access 2000, **3000PLUS** ("**3KP**") Configurator software lets you define, store, edit, download, upload, and manage any number of "configurations" for the Daytronic 3000PLUS Panel Meter.

Every real-world 3000PLUS application requires its own unique configuration. A "configuration" is a set of operating parameters that instruct the instrument precisely how it is to collect, display, process, and output sensorbased measurement data. The information contained in a 3000PLUS configuration includes general information, instrument setup parameters, Signal Conditioner Module (SCM) setup parameters, and calibration data.

The Configurator lets you set up and test serial communications between the PC running the Configurator software and a connected 3000PLUS instrument. Once valid communications have been established, you can configure the instrument using either the "OFF-LINE" or the "ON-LINE" method:

OFF-LINE CONFIGURATION

You may either create a new "default" configuration file or *upload* the existing setup parameters of the connected 3000PLUS instrument to form a new configuration file. You will then enter and validate all required setup values (see below), and finally *download* these values to the 3000PLUS instrument. This is the method outlined in Section 4.C. It requires you to perform at least an initial "ABSOLUTE" calibration of the instrument (see Step 5 of the overview).

ON-LINE CONFIGURATION

You may use the Configurator's "Live" Output window to view and modify the present configuration of the connected 3000PLUS instrument on a runtime basis. You may then (if desired) save the modified configuration to the currently open configuration file. In this case, no calibration or overall download is required.* You need not open or create a configuration file in order to configure your instrument "on-line," unless you want to save the resulting configuration or perform a subsequent

* In this case, calibration must be performed separately; the setup parameters that may be viewed and adjusted via the "Live" Output window do NOT include the basic calibration constants (see Section 4.E). calibration. See Section 4.D for a brief overview of "ON-LINE" configuration.

In general terms, the Configurator lets you

- define instrument setup values, including the model number of the installed Signal Conditioner Module (SCM) and parameters relating to real-time measurement and display, limit logic, and output processing
- define SCM-specific setup values, including the module's input range and analog filter cutoff frequency
- define or view general parameters relating to the configuration itself or to the configured instrument, including configuration file path, size, and version; instrument description; configuration creator code; user comments; instrument security code; etc.
- · validate the configuration at any time
- download the validated configuration to the connected 3000PLUS instrument

The Configurator also lets you perform selected runtime operations, including

- "absolute transducer," "absolute voltage," and/or "two-point" calibration of the 3000PLUS instrument's "live" measurement channel, including online adjustment of negative symmetry and positive or negative midscale linearity
- viewing any of the connected 3000PLUS instrument's three "live" analog outputs and adjusting it as desired (as part of "ON-LINE" configuration)
- viewing the entire "live" setup configuration of the connected 3000PLUS instrument, adjusting any displayed setup parameter on a run-time basis (as part of "ON-LINE" configuration), and saving all "live" parameters to the currently open configuration file, if desired
- sending one or more standard mnemonic commands to the instrument and viewing the response(s)
- applying a "HOLD" command to the instrument's "Auxiliary" and Voltage Outputs
- · releasing any and all latched limits

You may also

- upload the current configuration of the connected 3000PLUS instrument to a new configuration file for storage and/or editing
- view/print a configuration report or save it as a ".txt" file

STARTING THE 3KP CONFIGURATOR

Instructions for *installing and running* the Configurator software were given in Section 1.F.

After the Configurator starts up, you can do one of several things:

- OPEN AN EXISTING 3000PLUS CONFIGURATION by selecting Open... from the File menu (a SAM-PLE CONFIGURATION is installed with the Configurator software, to let you see typical setup entries)
- CREATE A NEW 3000PLUS CONFIGURATION by selecting New... from the File menu
- CREATE A NEW 3000PLUS CONFIGURATION by uploading the setup data contained in the connected 3000PLUS instrument, by selecting Upload Configuration from 3000PLUS... from the Configuration menu
- VIEW AND/OR MODIFY THE "LIVE" OUTPUT AND PRESENT CONFIGURATION of the connected 3000PLUS instrument by going to the Calibrate / Configure page and pressing the View / Set . . . button
- SEND ONE OR MORE COMMANDS to the connected 3000PLUS instrument by selecting Send Command... from the Communications menu

An overview of the procedure for creating a new instrument configuration "off-line" via the **New...** command is given in Section 4.C, below. For on-line modification of the connected 3000PLUS instrument's configuration, see Section 4.D.

GETTING CONFIGURATOR HELP

The Configurator provides a complete ON-LINE HELP system. To open HELP—and for instructions on how to use the F1 key to get *context-sensitive help* for a Configurator page, field, or button—select **Configurator HELP...** from the Configurator's **Help** menu. Click the **OPEN CONFIGURATOR HELP** button (or press [Alt] h). The introductory topic entitled "What is the 3000PLUS Configurator?" will appear. For the complete HELP **Contents** or **Index**, click the respective tab.

Be sure to study the following "Getting Started" HELP topics—along with Sections 4.B through 4.E of this manual—before proceeding:

- Setup and Testing of Serial Communications
- Read Me (Version x.x)

4.B SUMMARY OF CONFIGURATOR MENUS

FILE MENU¹

<u>N</u>ew... (= [Control]N)

Select to create a new configuration

<u>Open...</u> (= [Control]O)

Select to open an existing configuration

Close²

Select to close the open configuration

Save $\underline{A}s...^2$ (= [Control]S)

Select to save the open configuration using a new file name

E<u>x</u>it

Select to exit the Configurator program

COMMUNICATIONS MENU1

Comm's Setup and Test...

Select to set up and test serial communications with the connected 3000PLUS

Send Command... (= [Control]T)

Select to send one or more mnemonic commands to the connected 3000PLUS

CONFIGURATION MENU¹

Validate Configuration²

Select to validate the open configuration

Download Configuration to 3000PLUS...2

Select to download the open configuration to the connected 3000PLUS

Upload Configuration from 3000PLUS...

Select to upload the current setup values of the connected 3000PLUS to a new configuration

REPORTS MENU²

Full Configuration Report¹

Select to view/print the full configuration

¹ Not active when a REPORT preview is being displayed.

Configuration Commands List1

Select to view/print the set of mnemonic commands representing the open configuration

Close Report Preview³ (= [Control]W)

Select to close the presently displayed report preview

Zoom³

Select to switch between the selected **Zoom Magnification Percentage** and the best window "fit" of the displayed report preview

[Zoom Magnification Percentage]3

Select the magnification percentage to be applied to the displayed report preview

Output to Notepad3

Select to output the displayed report to a ".txt" file

Page Setup...3

Select to open the standard Windows PAGE SETUP window

\underline{P} rint...³ (= [Control]P)

Select to open the standard Windows PRINT window

HELP MENU

Configurator HELP...

Select to open the Configurator's HELP system and for an explanation of how to use the **F1** key to get context-sensitive help for a Configurator page, field, or button

About...

Select to display Configurator version, copyright, and protection information

Not active when a configuration has not yet been opened.

³ Only active when a REPORT preview is being displayed.

4.C OVERVIEW OF "OFF-LINE" CONFIGURATION

In general, you will take the steps listed below for "off-line" development of a new 3000PLUS setup configuration (although the exact sequence of steps may vary, depending on your own preference). Alternatively, you may initially wish to upload the existing setup parameters of the connected instrument to form a new 3000PLUS configuration, which you may then proceed to modify as desired. In this case, you need not perform Steps 1 and 2, below; the instrument's **SCM model number** will be automatically and accurately entered.

If in the course of defining a complete configuration, you should neglect to enter a value for any critical configuration parameter, you will be so informed when you attempt to download that configuration to the 3000PLUS instrument. The software will not let you download a critically incomplete configuration. You can run the validation routine at any time during the configuration process (without first having to command a download), to see if there are currently any errors that need to be corrected (see "Validating the Open Configuration" in the Configurator ON-LINE HELP).

As each configuration value is entered, it is automatically saved. There is no need to apply a "Save" to the configuration as a whole. This also means, however, that you cannot easily "restore" a changed configuration to its original state. For this reason, if you're editing an existing configuration, and think that you might later need that same configuration in its original (unedited) form, it's best to use the **Save As**... menu command and work on a copy of the original configuration (you can always delete the original later, if desired).

On any Configurator page, a *turquoise-colored data field* indicates a configuration value that is automatically determined by the software, usually on the basis of one or more user-entered values. You cannot directly type in the contents of such fields.

At any time you can view and print out a full Configuration report or a full list of the 3000PLUS mnemonic commands that represent the currently open configuration (see Appendix A of this manual).

 Using the New... menu command, open and give a name to a new (default) configuration. In the new configuration, all instrument setup parameters will be assigned specific default values, while all Signal Conditioner Module (SCM) setup parameters will be initially blank (until the SCM model number is entered).

- Enter the model number of the currently installed Signal Conditioner Module (SCM). You may either select "5D64" from the popup list, or interrogate the installed module directly via the Get/Check SCM Model Number button (assuming that serial communications have been established). When you ask the installed module for its model number, its serial number will also be communicated to the Configurator.
- In the Instrument Setup page, enter or select appropriate values for
 - · measurement and display setup
 - limit logic setup
 - setup of output processing, including analog peak capture, tare offset, and voltage output full scale
- In the SC Module Setup page, select appropriate values for
 - 5D64 nominal full-scale input range (in volts DC)
 - 5D64 analog filter (0.2, 2, 20, 200, or 2000 Hz)
- 5. Go to the Calibrate / Configure page, press the button labeled Calibrate This Instrument, and enter all requested calibration settings (see Section 4.E). If the Configurator is unable for any reason to communicate with the connected 3000PLUS instrument, the Instrument Calibration window cannot be opened. As explained in Section 4.E, "ABSOLUTE TRANSDUCER," "ABSOLUTE VOLTAGE," and TWO-POINT calibration methods are available for the Model 5D64 conditioner.
- 6. In the General page, enter optional instrument/ configuration description, configuration creator code, transducer model/serial number, and comments (if desired). You may also (1) specify a four-digit security code other than the default "0000" (if desired) to prevent unauthorized alteration of the 3000PLUS instrument's operating configuration via the front-panel keypad; and (2) indicate whether the operator will or will not be permitted to view and edit limit setpoint values while the instrument is in normal run mode by turning "limits security" off or on, respectively.
- Assuming that it passes the automatic validation test, your configuration is now ready to be downloaded (see "Downloading a Configuration to the 3000PLUS Instrument" in the Configurator ON-LINE HELP).

4.D OVERVIEW OF "ON-LINE" CONFIGURATION

As mentioned in Section 4.A, you may at any time use the Configurator's **3000PLUS** "Live" Output window (Fig. 11) to view and modify the present configuration of the connected 3000PLUS instrument on a strictly runtime basis. If a configuration file is currently open, you may, if you wish, save to that file all the configuration modifications you make via the "Live" Output window. However, you need not open or create a configuration file in order to configure your instrument "on-line," unless you want to save the resulting configuration or perform a subsequent calibration.

To open the "Live" Output window, go to the Calibrate / Configure page and press the button labeled View/Set "Live" Instrument Output and Configuration. This button will be active even if you have not yet opened an existing configuration or created a new one.

Assuming that valid serial communications have been established between the Configurator and the 3000PLUS, the Configurator will now query the instrument for each of its current setup parameters (excluding calibration data). This includes

- the current DISPLAY (DIS) setting, which determines which of the meter's three outputs will be initially displayed.
- the current HOLD (HLD) status for Channels 2 and 3, which can be subsequently controlled via the corresponding button in the "Live" Output window

All queried values will be loaded into the various data fields of the "Live" Output window that now appears.

SELECTING AND MODIFYING THE "LIVE" OUTPUT

At any time, you can select any of the 3000PLUS instrument's three separate output channels for "live" display just by clicking the corresponding button (see Section 1.D for a description of the channels). When a channel

- Selecting a given output channel for display in the "Live" Output window will not affect the front-panel display of the connected 3000PLUS instrument.
- ² The corresponding parameter of the presently open configuration will not be affected. Also, you will be informed if any of the modified configuration values are, for some reason, not accepted by the instrument.
- ³ By pressing the Release Latched Limits button in the "Live" Output window, you can release any and all currently latched limits (when limit monitoring has been enabled and the meter is set to latching limits mode).
- 4 This will reset the existing "CAL" numbers that are used to determine both absolute and two-point calibration (except for the Transducer Full-Scale Output ("CAL3")). The currently stored calibration values themselves will NOT be changed.

is selected, the fields and/or buttons for modifying any setup parameter(s) specific to that channel will be enabled.¹ When Channel 2 or 3 is selected, the **HOLD ON/OFF** button will also be enabled.

The "Live" Output window lets you change the currently effective value of each of the following output-specific parameters on a strictly run-time basis. As soon as you edit an existing parameter and exit that parameter's field or button set, the newly entered value will be immediately sent to the connected 3000PLUS instrument.²

- Peak Mode (Channel 2)
- Peak "Defeat" Threshold (Channel 2)
- Peak "Backout" Threshold (Channel 2)
- · Leak Rate (Channel 2)
- Desired "Tared" Output (Channel 2)
- Limits Enable, Limits Latch Mode, and Limits Polarity (Channel 2)³
- High and Low Limits (Channel 2)
- High and Low Limit Hysteresis (Channel 2)
- · Voltage Output Full Scale (Channel 3)

Modifying the "Live" Configuration

The "Live" Output window also lets you change the currently effective value of each of the following instrument / module setup parameters on a strictly run-time basis, regardless of the output channel being displayed. Again, as soon as you edit an existing parameter and exit that parameter's field or button set, the newly entered value will be immediately sent to the connected 3000PLUS instrument.²

- Security Code
- Limits Security
- Configuration Description
- Transducer Model/Serial Number
- Full-Scale Reading in Engineering Units
- Units Legend
- Display Offset
- Display Filter
- 5D64 Input Range and Analog filter

SAVING "LIVE" PARAMETERS TO THE CURRENT CONFIGURATION

You can easily transfer to the currently open 3000PLUS configuration all of the setup values presently displayed in the "Live" Output window by pressing the button labeled "Save All Current Settings to This Configuration."

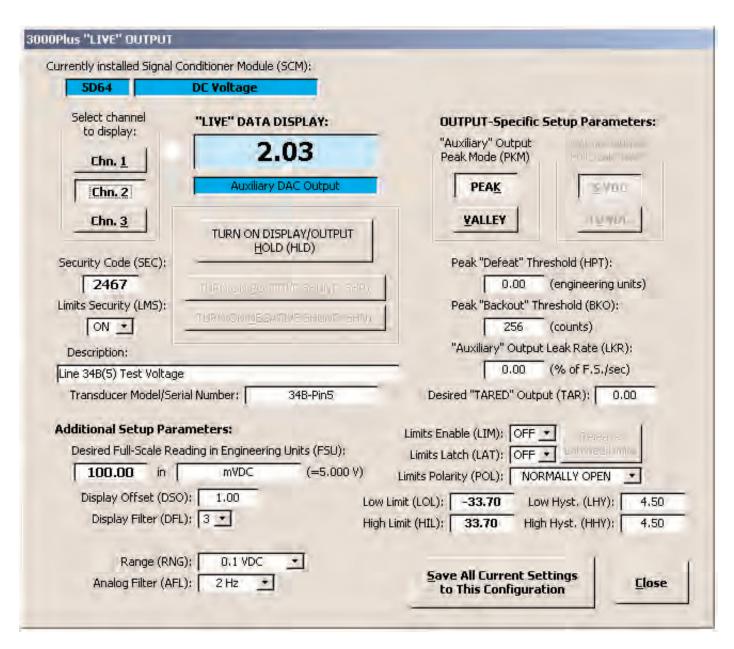


Fig. 11 3000PLUS Configurator "Live" Output Window

PLEASE NOTE: The following is only a general overview of Configurator-based calibration of the 3000PLUS with installed Model 5D64 DC Voltage Conditioner Module. *Complete and detailed instructions* for the entry of calibration values and for loading these values into the meter itself (when required) are given in the Configurator ON-LINE HELP sections titled "Absolute Calibration with an Installed Model 5D64 DC Voltage Conditioner" and "Two-Point ('Deadweight') Calibration with an Installed Model 5D64 DC Voltage Conditioner."

4.E SOFTWARE CALIBRATION OF THE 3000PLUS WITH 5D64

CALIBRATION OVERVIEW

The two methods described below are provided by the **3KP Configurator** software for calibration of a 3000PLUS instrument with installed Model 5D64.

To calibrate your 3000PLUS by either or both methods, you must first go to the Calibrate / Configure page and click the button labeled Calibrate This Instrument. This will open the Instrument Calibration window to display the ABSOLUTE Calibration page (Fig. 13). To switch between the two calibration methods, click on the tab for the desired method.

NOTE: If the Configurator is unable for any reason to communicate with the 3000PLUS, the **Instrument Calibration** window cannot be opened (see the ON-LINE HELP section titled "**Setup and Testing of Serial Communications**").

When it is opened, the **Instrument Calibration** window will display (in the center of its upper section) a "live," continuously refreshed readout of the connected meter's basic *scaled output channel* (Channel 1).*

The **Instrument Calibration** window will also display the following sets of "CALIBRATION VALUES":

- ACTUAL ("Live") Calibration values (in the upper right corner). These represent the calibration that is currently in effect for the connected 3000PLUS instrument. Also displayed here is the current shunt state of the installed 5D64 module, and the date/time of the last 3000PLUS calibration performed via the 3KP Configurator.
- * If the decimal-point precision of the configuration's currently entered Full-Scale Reading in Engineering Units (FSU) is different from that of the current "live" scaled output reading of the connected 3000PLUS, you will be alerted to this fact. During the course of either ABSOLUTE or TWO-POINT CALIBRA-TION, the instrument's display resolution will be automatically changed to accord with the configuration's "FSU" precision.

- CALCULATED Calibration Values (on the ABSOLUTE Calibration page only). This set of numbers is determined by the current entries of the page's "CAL" fields (described below). Some of the numbers may be missing, if one or more "CAL" fields are blank. When you press the button labeled "Save and Send Calculated Calibration Values," these numbers will be sent to the connected 3000PLUS instrument, and will be permanently transferred to the present configuration.
- CONFIGURATION Calibration Values (on the ABSOLUTE Calibration page only). These represent the calibration data currently stored in this configuration. They do not depend directly on the present "CAL"-field entries, as do the "calculated" values, and are changed only when absolute or two-point calibration is actually performed.

In the top left section of the window is a field for selection of the **Absolute Calibration Mode**, along with a field that displays the current ENGINEERING UNITS and that (in some cases) allows revision of these units.

In very general terms, the scaled analog output of a 3000PLUS with a 5D64 conditioner is calibrated by means of three variables:

- the 5D64 module's nominal full-scale input RANGE (RNG), expressed in volts DC
- a MODULE SCALING FACTOR (MSF) to be used as a gain multiplier for the module's nominal fullscale input range
- 3. a **MODULE INPUT OFFSET (MIO)**—i.e., a percentage of full-scale input range applied to the module's *pre-amplified (input)* signal, in order to remove signal bias inherent to the source transducer

PLEASE NOTE: For a 3000PLUS with 5D64 conditioner, the ABSOLUTE calibration technique described below is sufficient for most purposes, guaranteeing an accuracy for calibrated measurement data that exceeds the module's rated accuracy. Thus, no further "dead-

weight" calibration need normally be performed. You may, however, wish to apply **TWO-POINT (DEAD-WEIGHT)** calibration simply to improve on the Configurator's "absolute" calculations, when there are at least two independently and accurately known calibration points ("ZERO" and "SPAN").

As explained below, TWO-POINT calibration of the 5D64 includes optional \pm midscale LINEARITY corrections. Both calibration techniques allow NEGATIVE SYMMETRY adjustment of the 5D64's output (up to \pm 2% of full scale).

NOTE: Whenever you intend to apply both "absolute" and two-point calibration to the 3000PLUS, absolute calibration should always be performed first.

Also note that both calibration methods provide a means to restore the 3000PLUS to the calibration state that existed before the last calibration was performed.

ABSOLUTE CALIBRATION

In absolute calibration, the required calibration values are calculated "off-line" by the Configurator software, based on the numbers you enter in the **ABSOLUTE**Calibration page (shown in Fig. 13). Calibration information will not be issued to the 3000PLUS or saved to the present configuration until you press the button labeled "Save and Send Calculated Calibration Values."

The CAL3 field will always contain the 3000PLUS instrument's current Full-Scale Reading in Engineering Units (FSU) value (which cannot be changed in the Instrument Calibration window). CAL3 therefore specifies the desired relationship between the 5D64 module's measured engineering units and its high-level ±5.000 VDC output, given the full-scale input range (RNG) for which the 5D64 is currently set.

The CAL4 field lets you enter an optional zero correction term ("offset") to be continuously applied to the 5D64 module's measurement signal, expressed either in engineering units or in millivolts. In either mode, CAL4 should be entered with the desired plus/minus polarity: a positive offset value will be algebraically added to the module's output signal; a negative offset value will be algebraically subtracted. The initial (default) CAL4 setting for every 3000PLUS configuration is zero ("0").

Whether other calibration values need to be entered in addition to CAL3 and CAL4 will depend on the Calibration Mode selected by the user.

If the installed 5D64 module's received input is to represent *voltage itself*—as would be the case if the instrument were to be used as a scaled voltmeter—then the

VOLTAGE mode of absolute calibration should be selected. In this case, the **CAL1** and **CAL2** fields are not required and will not appear.

If, on the other hand, the 5D64's received input is to represent an analog of some parameter other than voltage—as would be the case if the instrument were connected to a DC-to-DC LVDT for measurement of physical displacement—then one of the two forms of the TRANSDUCER calibration mode should be selected:

- Select TRANSDUCER @ VOLTS FS if you want the sensitivity of the source transducer (CAL2) to be expressed in volts, full scale. In this case, the internal absolute calibration calculations require entry of the source transducer's full-scale rating (CAL1).
- Select TRANSDUCER @ VOLTS/UNIT if you want the sensitivity of the source transducer (CAL2) to be expressed in volts per (measured) unit. In this case, the transducer full-scale rating (CAL1) is not entered.

Regardless of the selected sensitivity mode, the fixed "sensitivity" relationship between an electrical stimulus and the output response of the source transducer must be entered in the CAL2 field. This value is normally supplied by the transducer manufacturer.

To summarize, the first four absolute calibration values for a 3000PLUS with 5D64 are as follows:

Transducer Information:

Fig. 12

CAL1: Transducer full-scale range in engineering units

-required only for TRANSDUCER MODE with sensitivity in VOLTS, FULL SCALE

CAL2: Transducer sensitivity (in V)

-required only for TRANSDUCER

MODE (either sensitivity mode)

Typical Asymmetry

5D64	DC Voltage		ACTUAL ("Live") Calibration Value			ration Values:
s. Cal. Mode: T	RANSDUCER @ VOLTS FS 👤	olts Fs Live" scaled output (CHN. 1		. 1): Scale Factor (MSF): 1.4400 Fu Input Offset (MIO): -00.91		Full Scale + Range
Units:	VOLTS DC					4500.0 1.5 VDC
		*	Da	te/Time of Last (Calibration: 8/15/0	15 8:34 AM
1. <u>A</u> BSOLUTE C	alibration 2. <u>T</u> WO-P	2. <u>I</u> WO-POINT Calibration				
CALIBRATION VAL	OLUTE CALIBRATION MODE, En UES' button. For HELP with any window and return to Instrument primation:	field, go to the field			ige the FULL-SCALE OUTF	PUT ('CAL3')
CAL1	Full-Scale Ra	Full-Scale Range in VOLTS DC:			CALCULATED Calibration Values (based on entered "CAL" numbers)	
CAL2	Sensitivity in VOL	10		Nominal F,S, Range: 5 VDC		
Output Informa	tion:				Scale Factor (I	MSF): 1.5000
CAL3	Desired Full-Scale Output in VOLTS DC:		7.5	(= 5.000 V)	Input Offset (MIO): 01.33	
	Desired Zero Correction	0.1		Negative Symmetry (SYM): 0.00	
CAL4	Desired Zero Correction in	MILLIVOLTS: C	0.1			
	Desired Zero Correction in	MILLIVOLTS: C	0.1		CONFIGURATION Calib	No. of Lot of Lot of the last
Negative Sym	Desired Zero Correction in metry Adjustmen! Actual Negative F-S Out t deviate from CAL3 magnitude b	put in VOLTS DC:	-7,5		CONFIGURATION Calib Nominal F.S. Range: Scale Factor (I Input Offset (0.05 VDC MSF): 1.0000

Fig. 13
Absolute Calibration Page for Installed Model 5D64

Output Information:

CAL4: Desired full-scale output reading in engineering units (= 5.000 V)

CAL4: Desired zero correction in either engineering units or mV

The CAL5 field may be used to determine an appropriate symmetry correction factor (SYM), based on the deviation that exists between the magnitude of the 5D64's actual negative full-scale output and that of the currently entered CAL3 (= Full-Scale Output) value—see Fig. 12.* The symmetry adjustment cannot exceed 2% of full scale.

As the Configurator calculates appropriate RNG, MSF, MIO, and SYM values, these numbers will be displayed in the respective CALCULATED Calibration Values fields. For the actual algorithms involved in these calculations, see Appendix B.

Once all required absolute calibration information has been entered—and has been evaluated as "valid" by the Configurator—you can actually calibrate the 3000PLUS either by issuing the relevant commands (only) via the

* A negative SYM value is needed when you want the full-scale measurement reading in the negative domain to be more negative (i.e., when you want a higher slope for the output), while a positive SYM value causes the reading to be more positive (lower output slope). In Fig. 12, the actual negative full-scale reading needs to be brought downwards (i.e., to be made more negative), until it corresponds to the dotted line.

button labeled "Save and Send Calculated Calibration Values." This action will also save these calculated values to the current configuration, so that they will be part of any future download to the instrument. With every complete calibration download, the present date and time will be entered in the Date/Time of Last Calibration field on the module's Calibrate / Configure page.

If, after you have calibrated the 3000PLUS by pressing the **Save and Send...** button, you wish to restore the meter to the calibration that existed before you pressed the button, you may do so by pressing the **Restore Previous Absolute Calibration** button, as explained in the Configurator ON-LINE HELP.*

Two-Point (Deadweight) Calibration

Unlike absolute calibration, two-point calibration is fully "on-line." In its computation of the required calibration constants, the Configurator will use the **Instrument Calibration** window's "live" scaled output reading (see Fig. 14 for the **TWO-POINT Calibration** page).

The Configurator will step you through the entire calibration procedure, enabling appropriate data fields and displaying appropriate prompting instructions at each step. Each required calibration value will be automatically sent to the 3000PLUS as soon as it is calculated and verified.

It is strongly recommended that you perform an ABSOLUTE calibration prior to every two-point calibration. This will not only yield a "nominally" calibrated instrument, but will also automatically ensure a good "first-approximation" Range (RNG) setting (which cannot be directly entered via the Instrument Calibration window). If you go to the TWO-POINT Calibration page without having first performed absolute calibration (since you last opened the Instrument Calibration window), the Configurator will bring this to your attention.

In very brief outline, the sequential steps of the twopoint calibration procedure are as follows (in most cases, you will use the **Continue** button to advance from one step to the next and the **Back** button to return to a prior step, if it is to be repeated; for complete

- * While this operation will return the connected 3000PLUS instrument to its previous calibration state by issuing appropriate RNG, MSF, MIO, and SYM commands, it will NOT change the corresponding values currently stored in the present configuration.
- ** The listed values for the RANGE (RNG) field are strictly "nominal." In selecting the most appropriate RNG setting, you should consult the table of "practical ranges" given in the Configurator ON-LINE HELP (and also in Appendix B of this manual), which takes into account the effective 4% overlap that has been built into the 5D64 scaling structure.

details concerning each step, see the Configurator ON-LINE HELP):

- Make sure that the desired FULL-SCALE READING IN ENGINEERING UNITS (FSU) has been entered on the Instrument Setup page.
- Make sure that the appropriate INPUT RANGE (RNG) value has been selected on the SC Module Setup page.**
- 3. Click the **Begin Calibration** button.
- 4. "Unload" the transducer—i.e., establish transducer "zero" input condition (less than 20% of full scale).
- Enter <u>DESIRED</u> ZERO-POINT READING in engineering units (volts or otherwise).
- 6. Repeat the zero-point procedure, if necessary.
- "Load" the transducer—i.e., establish transducer "span" input condition (between 80% and 100% of full scale).
- 8. Enter <u>DESIRED</u> SPAN-POINT READING (in engineering units).
- 9. Repeat the span-point procedure, if necessary.
- If NEGATIVE SYMMETRY adjustment is desired, establish transducer "negative span" input condition
- If NEGATIVE SYMMETRY adjustment is desired, adjust the displayed SYM value to obtain the desired output reading (see Fig. 12).
- 12. If POSITIVE LINEARITY adjustment is desired (see Fig. 15), apply input loading in the positive direction to approximately half of the transducer's nominal full-scale rating.
- If POSITIVE LINEARITY adjustment is desired, adjust the displayed LNP value to obtain the desired output reading (see "Midscale Linearity Corrections," below, for details).
- 14. If NEGATIVE LINEARITY adjustment is desired (see Fig. 15), apply input loading in the negative direction to approximately half of the transducer's nominal full-scale rating.
- If NEGATIVE LINEARITY adjustment is desired, adjust the displayed LNN value to obtain the desired output reading (see "Midscale Linearity Corrections," below, for details).
- 16. End or repeat calibration.

Every time a new RNG, MSF, or MIO value is automatically computed and sent to the 3000PLUS during the two-point procedure, the present date and time will be entered in the Date/Time of Last Calibration field on the module's Calibrate / Configure page.

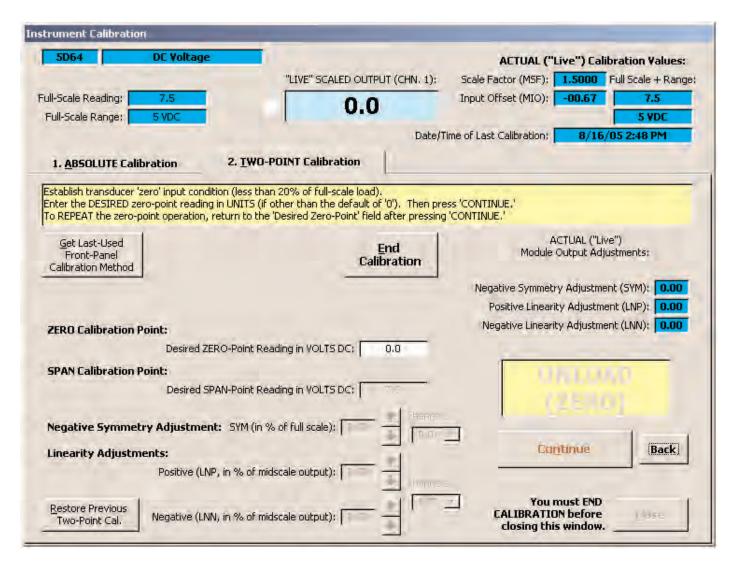


Fig. 14
Two-Point Calibration Page for Installed Model 5D64

If, after you have calibrated the 3000PLUS via the twopoint procedure, you wish to restore the meter to the calibration that existed before you last pressed the **Begin Calibration** button, you may do so by pressing the **Restore Previous Two-Point Calibration** button, as explained in the Configurator ON-LINE HELP.*

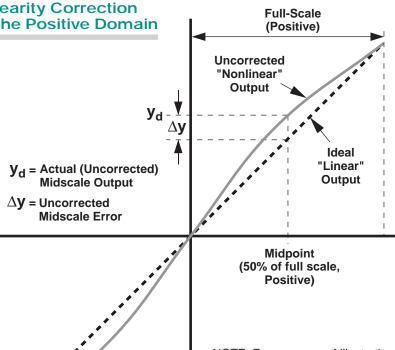
MIDSCALE LINEARITY CORRECTIONS

The Configurator's **LINEARITY POSITIVE (LNP)** and **LINEARITY NEGATIVE (LNN)** fields are for entry of a midscale linearity correction in the positive and negative domains, respectively (see Fig. 15). The linearity improvement furnished here is useful in cases where the output linearity error increases and decreases

smoothly (with no inflections) with increasing values of input.

You may wish to determine through standard error-plot analysis the approximate correction that needs to be applied to the output midway between zero and positive (or negative) full scale, as a plus or minus percent of the actual output reading at that point (it cannot exceed ±2.00 % of midscale output). You would then enter this number directly in the **LNP** (or **LNN**) field, after which you should observe the actual midscale

* While this operation will return the connected 3000PLUS instrument to its previous calibration state by issuing appropriate RNG, MSF, MIO, FAZ, and SYM commands, it will NOT change the corresponding values currently stored in the present configuration.



output reading to see if further adjustment is necessary (if so, you may use the corresponding UP / DOWN ARROW buttons). Fig. 15 illustrates a typical nonlinearity in need of both positive and negative midscale correction.

NOTE: A positive LNP value moves the positive-domain midpoint upwards (yielding a larger positive reading at

that point), while a negative LNP value moves it downwards (yielding a smaller positive reading). Similarly, a positive LNN value moves the negative-domain midpoint upwards (yielding a smaller negative reading at that point), while a negative LNN value moves it downwards (yielding a larger negative reading).

To correct for *positive-directed* nonlinearity in the positive domain, enter a POSITIVE LINEARITY (LNP) command of

$$LNP = -(\Delta y/y_d * 100)$$

A negative LNP value is entered because the midpoint of the actual output curve needs to be pushed downward (in the negative direction).

A comparable *positive* **NEGATIVE** LINEARITY (LNN) value would be entered to move the output curve upward (in the positive direction) in the negative domain.

5. OPERATING CONSIDERATIONS

5.A Sending a Command to the 3000PLUS

The **3000PLUS** ("3KP") Configurator software lets you send standard mnemonic commands to the connected 3000PLUS during normal run-time operation, one command at a time, while viewing the instrument's exact response to each command as it is sent. This feature can be used not only to perform run-time adjustments to the meter setup, but also to review the meter's current channel readings and configuration status—and to issue run-time "imperative" commands as desired.

For use of the Configurator's **Send Command...** window, see "**Sending a Command to the 3000PLUS Instrument**" in the Configurator ON-LINE HELP.

* When using a terminal program (such as Windows HyperTerminal), remember that the 3000PLUS instrument's RS232 communications interface employs a fixed protocol of 19,200 baud, 8 data bits, 1 stop bit, and No parity—with no software or hardware "handshake."

A "terminal emulation" program (either conventional or customized) can also be used to issue standard mnemonic commands to the 3000PLUS, and to receive the meter's responses.*

When the 3000PLUS is in receipt of a command issued to its serial communications port, the front-panel **CM** indicator will light (see Fig. 2 and Section 1.D).

For a discussion of 3000PLUS *command and response syntax*, plus a description of all setup, interrogation, and imperative commands, see **Appendix A**.

5.B CAPTURING A SIGNAL PEAK

SETTING PEAK MODE

Whenever peak capture is enabled, the 3000PLUS will be automatically placed in one of two possible PEAK MODES, as determined by the last-entered **PEAK MODE (PKM)** setting:

- PEAK—indicates that the reading of the "auxiliary" DAC output (Channel 2) will continuously equal the highest (i.e., most positive) value experienced by Channel 2 since peak capture was last enabled*
- VALLEY—indicates that the reading of Channel 2 will continuously equal the *lowest* (i.e., *most negative*) value experienced by Channel 2 since peak capture was last enabled*

The active peak mode can be specified as part of the normal 3000PLUS setup procedure—either by means of the front-panel button menu (as explained in Section 3.B) or the Configurator software (Section 4). It can be changed on a strictly *run-time* basis by using the "PKM" toggle button in the Configurator's "Live Output" window when Channel 2 is being displayed (see Fig. 11). It may also be specified at any time by issuing one of the following PEAK MODE (PKM) commands to the 3000PLUS, either via the Configurator's Send Com-

* Since the 3000PLUS instrument's "scaled voltage" output (Channel 3) is continuously proportional to Channel 2, it will report "peak" and "valley" readings along with Channel 2, as long as peak capture is enabled. mand... window or via a conventional or customized "terminal emulation" program (see Section 5.A, above):

PKM = 1 [sets to "PEAK" mode]
PKM = 2 [sets to "VALLEY" mode]

ENABLING AND DISABLING PEAK CAPTURE

The 3000PLUS instrument's peak-capture operation is turned on and off solely by means of a logic input at the rear **PEAK** ("**PEK**") screw terminal shown in Fig. 2. See Section 2.E for an explanation of how the "PEK" logic input can be connected for the enabling/disabling of peak capture, either by switch closure (no external supply required) or by active TTL logic.

The capture and hold of a typical input maximum is illustrated in Fig. 16 below. Here, a peak mode of "PEAK" (= positive peak capture) was established for the 3000PLUS during initial setup. Until peak capture is actually enabled at time t_1 , the "auxiliary" output (Channel 2) simply tracks the basic scaled output (Channel 1). After time t_1 , Channel 2 continuously reports the highest signal value experienced since peak capture last began. As long as Channel 1's value is continuously rising—as it does after t_1 up to the first small (uncaptured) peak—the reading of Channel 2 still appears to track it.

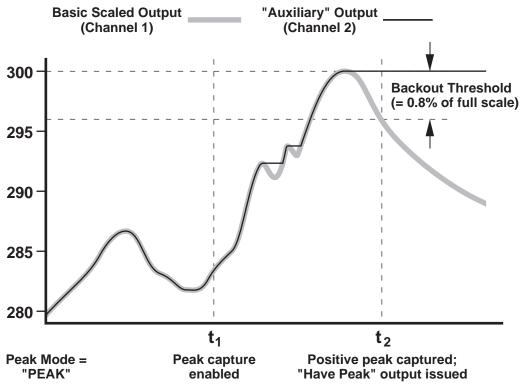


Fig. 16
Typical Positive Peak Capture

CAPTURING A PEAK: "BACKOUT" THRESHOLD AND "HAVE PEAK" OUTPUT

After peak capture has been enabled, an actual peak/valley "capture"—and the resulting transmission of a TTL-level "HAVE PEAK" logic output from the rear of the 3000PLUS (see Section 2.E)—will occur when Channel 2's reading differs from that of the basic scaled output (Channel 1) by more than a preset threshold amount, called the peak "backout." The presence of the backout threshold prevents low-amplitude signal noise from toggling the "HAVE PEAK" output on and off, as illustrated in Fig. 16.

Suppose, for example, that the full-scale input range is 500 (engineering units) and that the input signal (represented by Channel 1) "peaks" at 300, as in Fig. 16. If the backout threshold is currently set to indicate 0.8% of full scale (see below), then the "HAVE PEAK" condition will be registered only at time t_2 , when Channel 1 falls below 296 (engineering units)—the "auxiliary" output (Channel 2) remaining all the while at the "captured" maximum of 300.

The first two ("noise") peaks that occur between times t_1 and t_2 are held only until a higher input value is detected; they do not have sufficient backout to be actually "captured."

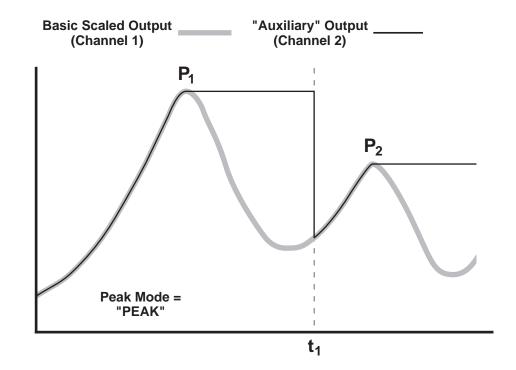
Like peak mode (above), the active backout threshold can be specified as part of the normal 3000PLUS setup procedure. It can be changed on a strictly *run-time* basis by entering the desired counts value in the "BKO" field in the "Live Output" window when Channel 2 is being displayed (see Fig. 11). It may also be specified at any time by issuing the "write" form of the PEAK BACKOUT THRESHOLD (BKO) command to the 3000PLUS.

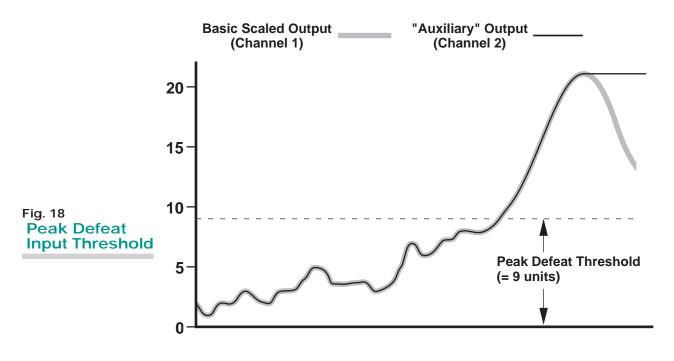
The initial (default) backout setting for a new configuration is "256" (counts), which corresponds to a signal change of approximately 0.8% of full scale. For best results, the backout should not be less than "40" (counts), corresponding to a signal change of about 0.1% of full scale.

By issuing a **HOLD (HLD)** command as explained in Section 5.C, you can indefinitely "freeze" a captured peak or valley (within the limits imposed by the presently effective *decay rate* of the "auxiliary" output—see below).

RESETTING PEAK CAPTURE

You can clear any currently captured peak value—thus resetting the meter's "Have Peak" output to *Logic 0*—by momentarily pressing the front-panel **Enter** button *during RUN-TIME 3000PLUS operation (only)*,




Fig. 17 Typical Positive Peak Reset

Resetting a peak may also be accomplished by momentarily bringing the meter's rear-panel **PEAK** ("**PEK**") terminal to the *Logic 0* level, and then immediately back to *Logic 1* (see Fig. 10.a, Section 2.E). As a result, Channel 2 will be returned (at least momentarily) to the existing value of the basic scaled output (Channel 1).

Fig. 17 shows how a peak reset at time t₁ allows the capture of successively lower-valued signal maxima.

SETTING THE "PEAK DEFEAT" THRESHOLD

A "PEAK DEFEAT" input threshold expressing in engineering units can be set up in order to prevent induced low-level signal noise from triggering a "HAVE PEAK" condition, when analog peak capture is enabled (as shown in Fig. 18). As long as the value of the "auxiliary" output remains below the specified threshold, no peak capture will occur. Within the low-level deadband thus

defined, Channel 2 will simply track the basic scaled output, regardless of actual signal behavior.

Like the backout threshold (above), the active peak defeat threshold can be specified as part of the normal 3000PLUS setup procedure. It can be changed on a strictly *run-time* basis by entering the desired units value in the "HPT" field in the "Live Output" window when Channel 2 is being displayed (see Fig. 11). It may also be specified at any time by issuing the "write" form of the PEAK DEFEAT THRESHOLD (HPT) command to the 3000PLUS.

Expressed in the active engineering units, the peak defeat threshold value should not be greater than 20% of the 3000PLUS instrument's currently effective **Full Scale Units (FSU)** value (discussed in Section 1.D).

SETTING THE "LEAK RATE"

The 3000PLUS user can specify the rate at which every signal value held by the "auxiliary" DAC output will decay, in *percent of full scale per second*. This is useful in the measurement of peak trends in very fast cyclic

processes, and permits capture of rapidly successive peaks of similar amplitude—as shown in Fig. 19—without having to provide a "reset" for each peak. Typical applications involve high-speed displacement sensors in the monitoring of tool or material wear (wear and metal fatigue of dies, presses, bearings, bushings, etc.) or of eccentric phenomena like shaft runout or flywheel wobble.

Like the backout and peak defeat thresholds (above), the active peak "leak rate" can be specified as part of the normal 3000PLUS setup procedure. It can be changed on a strictly *run-time* basis by entering the desired rate value in the "LKR" field in the "Live Output" window when Channel 2 is being displayed (see Fig. 11). It may also be specified at any time by issuing the "write" form of the LEAK RATE (LKR) command to the 3000PLUS.

The desired leak rate should be entered as a positive number (or zero) representing percent of full scale per second. You cannot enter a value greater than 3.50 (%).

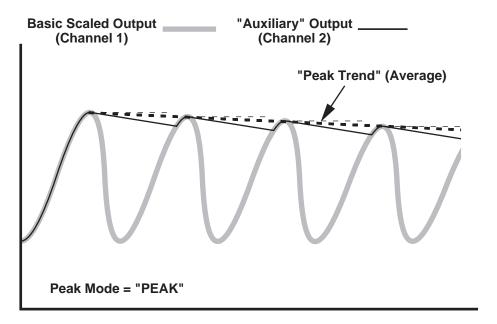


Fig. 19 Peak Trend Monitoring Using Adjustable Leak Rate

5.C Applying a Signal Hold

There are three ways to instruct the 3000PLUS instrument to instantly "freeze" its "auxiliary" DAC and "raw volts" outputs (Channels 2 and 3) at their existing readings—and to subsequently "unfreeze" these outputs to resume normal measurement reporting*:

VIA LOGIC INPUT

See Section 2.E for an explanation of how the 3000PLUS instrument's rear-panel **HOLD** ("**HLD**") logic input can be connected for application of the signal hold, either by switch closure (no external supply required) or by active TTL logic.

VIA CONFIGURATOR SOFTWARE

You can use the HOLD ON/OFF button of the "Live" Output window (when Channel 2 or 3 is on display) to apply and remove the signal hold. See Fig. 11 and "Applying a Hold Command to the 'Auxiliary' and Voltage Outputs" in the Configurator ON-LINE HELP.

VIA OTHER SOFTWARE COMMAND SOURCE

When communicating with the 3000PLUS through a conventional or customized "terminal emulation" program (see Section 5.A, above), you can apply the signal hold by issuing a **HOLD (HLD)** command of the form

HLD = ON

To discontinue the signal hold, command HLD = OFF

On receipt of either of the above **HLD** commands, the 3000PLUS will respond with "ACK." These are strictly run-time "imperative" commands; the 3000PLUS will always power up in the **HLD** = **OFF** state.

INTERROGATING FOR HOLD STATUS

Every time the "Live" Output window is opened, the Configurator will automatically interrogate for the 3000PLUS meter's current hold status, which will then be reflected in the state of the HOLD ON/OFF button (see above).

When communicating with the 3000PLUS through a conventional or customized "terminal emulation" program, you can request the hold status by sending the "read" form of the **HOLD (HLD)** command:

HLD

The meter will answer with "ON" (if Channels 2 and 3 are currently frozen) or "OFF" (if they are not).

* Like captured peaks and valleys, signal values frozen in response to a HOLD (HLD) command are subject to the currently effective decay rate of the "auxiliary" DAC output (for user adjustment of the "leak rate," see Section 5.B, above).

5.D Applying a Tare Offset

By specifying a TARE OFFSET for the 3000PLUS instrument's "auxiliary" DAC output (Channel 2), you can automatically subtract out the container weight in batchweighing operations or establish an arbitrary zero reference in comparator gaging operations (among many other applications).*

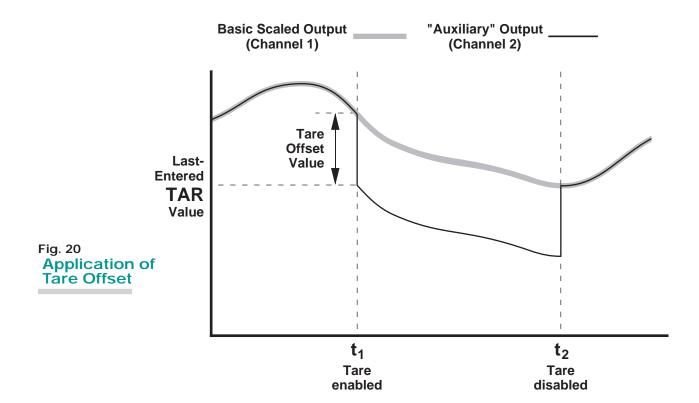
The actual application of a tare offset value to Channel 2 is initiated solely by means of a logic input at the rear **TARE** ("**TAR**") screw terminal shown in Fig. 2. See Section 2.E for an explanation of how the "TAR" logic input can be connected for the tare enable/disable, either by switch closure (no external supply required) or by active TTL logic.

The amount of offset to be algebraically subtracted from Channel 2 is determined by the last-entered **DESIRED TARED OUTPUT ("TAR")** value, a number stored in EEPROM by the 3000PLUS instrument. Expressed in the active engineering units, the currently effective TAR value indicates the reading to which Channel 2 is to be forced when tare is next enabled.**

Fig. 20, below, shows how this works. Here, tare is initiated at time t_1 —and maintained until time t_2 —by a continuously "true" logic **TARE** input. At t_1 , the "auxiliary" output is brought down to the last-entered TAR value. From this point, it continues to track Channel 1, but now with the continuous application of the constant tare offset determined by the difference between the value of Channel 1 at time t_1 and the stored TAR value. At time t_2 , tare is disabled by resetting the TARE input to *Logic 0*, and Channel 2 is returned to the "untared" tracking of Channel 1.

(cont'd)

- * The tare offset should not be confused with the DISPLAY OFFSET (DSO), discussed in Section 1.D, which is a user-specified amount of ± offset applied to the instrument's scaled measurement display in addition to any zero offset resulting from instrument calibration and to any currently enabled tare offset. See Sections 3.B and 4 for entering the desired DSO.
- ** In many cases, it is desirable to keep the default TAR setting of "0," so that tare can be enabled while only the container itself is being weighed, thereby resulting in an initial "empty" reading of exactly zero.



The TAR value can be specified as part of the normal 3000PLUS setup procedure—either by means of the front-panel button menu (as explained in Section 3.B) or the Configurator software (Section 4). It can be changed on a strictly *run-time* basis by entering the desired tared output in the "TAR" field in the "Live Output" window when Channel 2 is being displayed (see Fig. 11). It may also be specified at any time by issuing the "write" form of the TARE (TAR) command to the 3000PLUS, either via the Configurator's Send Command... window or via a conventional or customized "terminal emulation" program (see Section 5.A, above).

Expressed in the active engineering units, the tared output value may be either positive or negative—where a

negative tare offset is actually *added* to the basic output—but should not have an absolute value greater than the 3000PLUS instrument's currently effective **Full Scale Units (FSU)** value (discussed in Section 1.D).

Note that issuing a new TAR value to the meter *while* the tare function is already on will not affect the current reading of Channel 2. In order for the new TAR value to take effect, the tare function must first be turned OFF and then ON again (via logic input to the rear-panel TARE terminal).

5.E LIMIT MONITORING

ENABLING/DISABLING LIMITS

When limit monitoring is enabled, the 3000PLUS will continuously evaluate its "auxiliary" DAC output (Channel 2) for conformance to the currently specified high/low setpoint values, activating appropriate relays and front-panel indication on detection of limit violation (for LOGIC I/O connections, see Section 2.E).

The active limits status can be specified as part of the normal 3000PLUS setup procedure—either by means of the front-panel button menu (as explained in Section 3.B) or the Configurator software (Section 4). It can be changed on a strictly *run-time* basis by selecting "ON" or "OFF" in the "LIM" field in the Configurator's "Live Output" window when Channel 2 is being displayed (see Fig. 11). It may also be specified at any time by issuing the "write" form of the LIMITS (LIM) command to the 3000PLUS, either via the Configurator's Send Command... window or via a conventional or customized "terminal emulation" program (see Section 5.A, above).

When limits are disabled, the meter's three front-panel limit indicator lights will be inactive.

SETTING HIGH/LOW LIMITS

By specifying two independent limit setpoints, you can define the three distinct limit zones shown in Fig. 21:

- "LESS THAN" ZONE ("LO"): the reading for Channel 2 is less than the current Low Limit
- "BETWEEN" ZONE ("OK"): the reading for Channel 2 is greater than or equal to the current Low Limit and less than or equal to the current High Limit
- "GREATER THAN" ZONE ("HI"): the reading for Channel 2 is greater than the current High Limit

The "LESS THAN" or "GREATER THAN" zones may be effectively extended for *nonlatching* limits by means of a user-specified hysteresis deadband (see below).

Normally entered during 3000PLUS setup, the high/low limits can be changed on a strictly *run-time* basis by entering desired values in the "HIL" and "LOL" fields, respectively, in the Configurator's "Live Output" window when Channel 2 is being displayed (see Fig. 11). They may also be specified at any time by issuing the "write" forms of the HIGH LIMIT (HIL) and LOW LIMIT (LOL) commands to the 3000PLUS.

(cont'd)

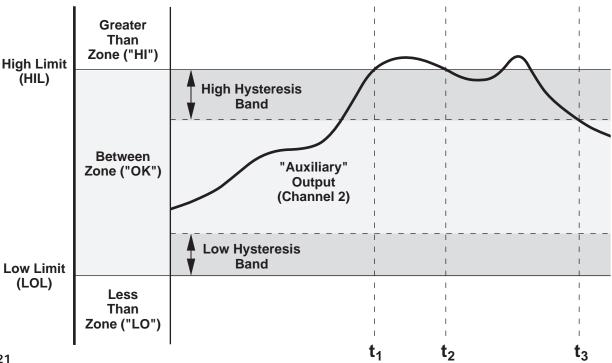


Fig. 21 3000PLUS Limit Zones

Expressed in the active engineering units, the absolute value of either limit value should not be greater than the 3000PLUS instrument's currently effective **Full Scale Units (FSU)** value (discussed in Section 1.D).

RUN-TIME MODIFICATION OF LIMIT VALUES

As mentioned in Section 1.D, when the 3000PLUS instrument's **LIMITS SECURITY (LMS)** is OFF, the local operator is able to use the front-panel buttons to quickly view and adjust the operating limit values *during normal run-time operation*, *without having to enter Setup Mode*. This is the case even when limit monitoring is currently disabled (see above).

As long as LMS = OFF, the 3000PLUS meter's currently effective LOW-LIMIT and HIGH-LIMIT setpoint values will be added to the run-time display cycle controlled by the

button (as explained in Section 1.E).

When either limit is displayed, its numerical value may be changed by means of the

buttons, as explained in Sections 3.A and 3.B ("Setup Stage 5: Limits"). To finalize the limit alteration, you must press

once more (NOT **Enter**). This will step the display to the HIGH LIMIT value (if LOW LIMIT is currently displayed) or to Channel 1 (if HIGH LIMIT is currently displayed).

SETTING LIMIT LATCH MODE

Limit monitoring may be in either LATCHING or NON-LATCHING mode. In latching mode, when a high-limit or low-limit violation is detected, that violation condition will remain in effect—regardless of the subsequent behavior of Channel 2—until the limits have been "released," as explained below. When limits are non-latching, any detected limit violation condition will cease to occur as soon as the Channel 2 reading leaves the corresponding limit zone (or associated hysteresis deadband).*

Like the limits enable status (above), the active latch mode can be specified as part of the normal 3000PLUS setup procedure. It can be changed on a strictly *runtime* basis by selecting "ON" or "OFF" in the "LAT" field

in the Configurator's "Live Output" window when Channel 2 is being displayed (see Fig. 11). It may also be specified at any time by issuing the "write" form of the LIMIT LATCH (LAT) command to the 3000PLUS.

SETTING LIMIT HYSTERESIS

The high and low limit hysteresis values let you define the hysteresis windows (or "deadbands") shown in Fig. 21, in order to prevent low-level signal noise from toggling the limit relays on and off while the reading of Channel 2 remains in the neighborhood of the corresponding setpoint.

Expressed in the active engineering units, the *high* hysteresis value is *subtracted* from the present high limit value to determine the *lower threshold* of the high deadband. Similarly, the *low* hysteresis value is *added* to the present low limit to determine the *upper threshold* of the low deadband.

In the example shown in Fig. 21, a "high violation" is triggered when the Channel 2 reading enters the "Greater Than" zone by exceeding the high limit value at time t_1 . At time t_2 , Channel 2 falls back to the "OK" zone. If there were no hysteresis band—and assuming that limits are NONLATCHING—the high violation would cease to occur at t_2 . In this case, however, the limit status continues to be evaluated as "high violation" until such time as the reading becomes less than the lower threshold of the high hysteresis band, which happens at time t_3 . At this point, the limit status returns to "OK."

Normally entered during 3000PLUS setup, the high/low hysteresis values can be changed on a strictly *run-time* basis by entering desired values in the "HHY" and "LHY" fields, respectively, in the Configurator's "Live Output" window when Channel 2 is being displayed (see Fig. 11). They may also be specified at any time by issuing the "write" forms of the HIGH HYSTERESIS (HHY) and LOW HYSTERESIS (LHY) commands to the 3000PLUS.

Note that you cannot enter a negative hysteresis value, or a number that is greater than the *difference* between the existing high and low limit values.

SETTING LIMIT RELAY POLARITY

The 3000PLUS meter lets you set the contact polarity of the six limit relays to NORMALLY OPEN ("NO") or NORMALLY CLOSED ("NC").

Like the limits enable status and latch mode (above), the active relay polarity can be specified as part of the normal 3000PLUS setup procedure. It can be changed on a strictly *run-time* basis by selecting the desired state in the "POL" field in the Configurator's "Live Output" window when Channel 2 is being displayed (see Fig. 11). It may also be specified at any time by issuing the "write" form of the POLARITY (POL) command to the 3000PLUS.

^{*} Latching also applies to the "BETWEEN" ("OK") limit zone. That is, when a limit violation occurs and latching is enabled, the "OK" indicator will remain on and the "OK" relays will remain activated until limits are released.

RELEASING LATCHED LIMITS

When limit monitoring has been enabled and the instrument is set to the LATCHING mode, there are four ways to release any and all currently latched limits, thereby turning off the corresponding front-panel indicator and deactivating the corresponding limit relays:

VIA FRONT-PANEL "ENTER" BUTTON

To "unlatch" all latched limits during RUN-TIME 3000PLUS operation (only), momentarily press the **Enter** button:

VIA LOGIC INPUT

See Section 2.E for an explanation of how the 3000PLUS instrument's rear-panel **RELEASE LATCH**

("RLS LAT") logic input can be connected for release of latched limits, either by switch closure (no external supply required) or by active TTL logic.

VIA CONFIGURATOR SOFTWARE

You can use the **Release Latched Limits** button of the "Live" Output window (when Channel 2 is on display) to "unlatch" all latched limits. See Fig. 11 and "Releasing Latched Limits" in the Configurator ON-LINE HELP.

VIA OTHER SOFTWARE COMMAND SOURCE

When communicating with the 3000PLUS through a conventional or customized "terminal emulation" program (see Section 5.A, above), you can issue the **RELEASE (RLS)** command in order to release all latched limits. On receipt of **RLS**, the 3000PLUS will respond with "ACK."

SUMMARY OF MNEMONIC COMMANDS

A.1 COMMAND AND RESPONSE SYNTAX

When issuing one or more commands to a 3000PLUS meter by some means *other than the 3KP CONFIGU-RATOR software*, please note the following:

- SPACE CHARACTERS SHOULD NOT BE INCLUD-ED IN ANY COMMAND EXPRESSION.*
- ALL COMMANDS ARE TO BE TERMINATED BY A SINGLE CARRIAGE RETURN ([CR]).** ALL RESPONSES BY THE 3000PLUS ARE ALSO TERMI-NATED BY A CARRIAGE RETURN ([CR]). This standard termination is not shown in the specific commands and responses listed below.
- After a command has been issued, no further characters should be sent until receipt of a response to that command (ACK, NAK, or ANSWER).

A *setup* (or "write") command instructs the meter to store a particular setup value in EEPROM memory, and has the general form

[MNEMONIC]=[value][CR]

Upon receipt of a setup command, the 3000PLUS will issue a response of either "ACKNOWLEDGED" or "NOT ACKNOWLEDGED"—i.e., of either

ACK[CR] or NAK[CR]

NOTE: The ACK[CR] message will be issued only after the received setup value has been successfully stored in the meter's EEPROM memory.

A response of NAK[CR] means that the meter did not recognize the received ASCII string as a valid mnemonic command. If, for example, you were to issue a command of RNG= 6[CR], you would receive a response of NAK[CR] because there is a space following the equals sign (for space inclusion, see above); if you issued a command of SYN=0.05[CR], you would receive NAK[CR] because there is no "SYN" command.

An *interrogation* (or "read") command normally asks the 3000PLUS for the current value of a stored setup parameter, and has the general form

[MNEMONIC][CR]

Upon receipt of a valid interrogation command, the meter will issue a response of

[value][CR]

If the interrogation command is invalid, the only response will be **NAK[CR]**.

An imperative command does not store or request information, but rather tells the 3000PLUS to do something (for example, DIS=2[CR] calls the meter's "Auxiliary" output (Channel 2) to the front-panel display; RLS[CR] releases any and all presently latched limits). The general form of an imperative command will usually resemble that of an interrogation command, being usually a single three-character mnemonic, althoughas in the case of DIS-it can sometimes resemble a setup command. Upon receipt of an imperative command, the meter will issue a response of either ACK[CR] or NAK[CR], depending on whether or not the command has been recognized as valid-or, if a valid command has requested a given run-time status such as the current DIS or HLD status, it will issue that value (e.g., 2 or OFF).

NOTE: The **ACK[CR]** message will be issued only after the action specified by the imperative command has been successfully performed.

^{*} The only exception to this rule are the following MODULE PARAMETER ("MP") commands: MP1, MP2, MP3, MP4, MP5, MP8, and MP9. Spaces may be included in the character string being entered via the "write" form of any of these commands. See below for the allowed syntax of each "MP" command.

^{**} Commands are never to be terminated by CARRIAGE RETURN, LINE FEED ([CR][LF]).

A.2 Model 5D64 Setup and Interrogation Commands

PLEASE NOTE: All of the 3000PLUS commands listed in this and the following section are applicable when the installed 5D module is a **Model 5D64 DC Voltage Conditioner**. Valid commands that only apply to other 5D models (and NOT to the 5D64) are not listed here, and will evoke a response of **NAK** when issued to a 3000PLUS instrument with an installed 5D64 module.

AFL ANALOG FILTER

AFL= f Sets *both* analog output filters of the installed 5D64 module to f (1 through

5). Actual cutoff frequencies corresponding to filter constants are module-specific; for the Model 5D64, they

are as follows:

f = 1: 0.2 Hz f = 2: 2 Hz f = 3: 20 Hz

f = 4 : 200 Hz f = 5 : 2000 Hz

AFL Reads current filter-constant values—

which, for a 5D module installed in a 3000PLUS, are always the same;

returns f,f.

LNN NEGATIVE LINEARITY

LNN=m Sets the installed 5D64's negative lin-

earity adjustment to the value m (% of actual midscale output reading), where $-2 \le m \le 2$. A positive LNN value moves the negative-domain midpoint upwards (yielding a smaller negative reading at that point), while a negative LNN value moves it downwards (yielding a larger

negative reading).

LNN Reads current negative linearity adjust-

ment value; returns m in the format

X.XX.

LNP POSITIVE LINEARITY

LNP=m Sets the installed 5D64's positive linear-

ity adjustment to the value m (% of actual midscale output reading), where

 $-2 \le m \le 2$. A *positive* LNP value moves

* For interpretation of the error code, see any 5D Module Instruc-

the positive-domain midpoint upwards (yielding a larger positive reading at that point), while a *negative* LNP value moves it downwards (yielding a smaller

positive reading).

LNP Reads current positive linearity adjust-

ment value; returns m in the format

X.XX.

MID MODULE IDENTIFICATION

MID Reads the installed 5D64's current ID

and diagnostic information string. Returns **5D64**,**xxxx**,**hhhh** (where "xxxx" is the module's 4-character alphanumeric **Serial Number**, and "hhhh" is the 4-character hexadecimal-

ASCII error code).*

NOTE: There is no "write" form of the

MID command.

MIO MODULE INPUT OFFSET

MIO=m Sets the installed 5D64's pre-amplified

(analog input) offset to the value m (% of selected full-scale input range—see **RNG**, below), where $-20 \le m \le 20$.

MIO Reads current module input offset

value; returns m in the format XX.XX.

MP0 through MPD MODULE PARAMETER

Used by the 3000PLUS CONFIGURATOR software to write and read miscellaneous module configuration information, as follows (each MPn string \$ can have up to 16 ASCII characters; spaces may be included as desired or required. NOTE: THE FOLLOWING LIST INCLUDES ONLY THOSE "MP" COMMANDS THAT ARE USED WHEN A 5D MODULE IS INSTALLED INA 3000PLUS METER.

(cont'd)

MP1=\$ \$ = Configuration Description (first 16

characters)

NOTE: The MP1, MP2, and/or MP3 string may be NULL (no characters), if

desired.

MP2=\$ \$ = Configuration Description (next 16

characters)

MP3=\$ \$ = Configuration Description (final 16

characters)

MP4=\$ \$ = Last Download Date/Time

NOTE: The 3KP Configurator software

requires an MP4 format of "(M)M/(D)D/YY (H)H:MM A" or

"(M)M/(D)D/YY (H)H:MM P," depending on whether the time is "AM" or "PM," respectively; digits in parentheses are

optional

MP5=\$ \$ = Engineering Units

NOTE: The MP5 string may be NULL

(no characters), if desired.

MP8=\$ \$ = Last Calibration Date/Time

NOTE: The 3KP Configurator software

requires an MP8 format of "(M)M/(D)D/YY (H)H:MM A" or

"(M)M/(D)D/YY (H)H:MM P," depending on whether the time is "AM" or "PM," respectively; digits in parentheses are

optional

MP9=\$ \$ = Transducer Model/Serial Number

NOTE: The MP9 string may be NULL

(no characters), if desired.

MP1 Reads the current MP1 string; returns \$

MP2 Reads the current MP2 string; returns \$

Etc.

MSF MODULE SCALE FACTOR

MSF=m Sets the installed 5D64's gain (scale

factor) to the value m, where $1.0000 \le m \le 1.5999$ (for the Model 5D64); m is used as a multiplier for the full-scale input range (see **RNG**, below).

MSF Reads the current module scale factor

value; returns m in the format 1.XXXX.

RNG RANGE

RNG=r Sets the installed 5D64's range code to

the alphanumeric character r. Allowed full-scale input ranges are module-specific; for the Model 5D64, they are as follows (see Table 2, Appendix B, for the associated "practical" ranges):

r = 0: 0.05 VDC r = D : 4 VDCr = 1: 0.075 VDC r = E: 5 VDCr = 2: 0.1 VDC r = F: 7.5 VDC r = G: 10 VDC **r = 3**: 0.15 VDC r = 4 : 0.2 VDCr = H: 15 VDC r = 1: 20 VDC r = 5 : 0.3 VDCr = 6: 0.4 VDC r = J: 30 VDC r = 7 : 0.5 VDCr = K: 40 VDC r = 8: 0.75 VDC r = L: 50 VDCr = 9: 1 VDC r = M: 75 VDC r = A : 1.5 VDCr = N: 100 VDC r = 0: 150 VDC r = B : 2 VDC

r = C : 3 VDC

RNG Reads current module range code;

returns r.

SYM NEGATIVE SYMMETRY

SYM=m Sets the installed 5D64's negative sym-

metry adjustment to the value m (% of

full scale), where $-2 \le m \le 2$.

SYM Reads current negative symmetry

adjustment value; returns m in the for-

mat X.XX.

A.3 3000PLUS SETUP AND INTERROGATION COMMANDS

AVV ANALOG VOLTAGE VALUE

AVV=n Sets to n the full-scale value for the

meter's Channel 3 ("scaled voltage" output); n = 1 (for 0-5 VDC) or 2 (for 0-

10 VDC).

AVV Reads current full-scale setting for

Channel 3; returns 1 or 2.

BKO PEAK BACKOUT THRESHOLD

BKO=c Sets the width of the peak "backout"

threshold for the meter's "auxiliary" DAC output (Channel 2) to c, which is expressed in A/D counts (an integral number from 1 through 999, typically

greater than 40).

BKO Reads current peak "backout" thresh-

old value; returns c.

CAL CALIBRATION

CAL=n Sets the meter's calibration method

number to n. For a 3000PLUS with installed Model 5D64, n = 1 (for ABSOLUTE TRANSDUCER), 2 (for ABSOLUTE VOLTAGE), or 3 (for TWO-POINT). This parameter is primarily for front-panel menuing, and is not included in a 3000PLUS configuration file.

CAL Reads current calibration method;

returns n.

DFL DISPLAY FILTER

DFL=f Sets the smoothing filter constant of

the meter's displayed value to f (an integer from 0 through 9, indicating increasing amounts of digital filtering).

DFL Reads current display filter constant;

returns f.

DSO DISPLAY OFFSET

DSO=b Sets the display offset for the meter's

Channel 1 (basic 5-VDC scaled output) and Channel 2 ("auxiliary" DAC output) to the value b, which is expressed in engineering units and to the decimal-point precision of the current **FSU** value; $-199990 \le b \le 199990$; b should

not be greater than 30% of the current

full-scale reading.

DSO Reads current display offset value;

returns b.

FSU FULL SCALE UNITS

FSU=m Sets to m the desired full-scale reading

of the meter (to correspond to a full-scale output of +5.000 V). The value m is expressed in *desired engineering units*; $-199990 \le m \le 199990$. NOTE: The *decimal-point precision* of the entered FSU value determines the precision of other scaled values, including display offset (DSO), tare offset (TAR), high and low limits (HIL and LOL), limit hysteresis values (HHY and LHY), and peak "defeat" threshold (HPT).

Reads current full-scale setting; returns

m.

FSU

HHY HIGH LIMIT HYSTERESIS

HHY=h Sets the width of the high-limit hystere-

sis deadband for the meter's "auxiliary" DAC output (Channel 2) to the value h, which is expressed in engineering units and to the decimal-point precision of the current **FSU** value; $0 \le h \le 199990$; h cannot be greater than the difference between the existing **HIL** and **LOL** val-

ues.

HHY Reads current high-limit hysteresis

value; returns h.

HIL HIGH LIMIT

HIL=h Sets the high-limit setpoint for the

meter's "auxiliary" DAC output (Chan-

nel 2) to the value h, which is

expressed in engineering units and to the decimal-point precision of the current **FSU** value; -199990 \leq h \leq 199990; h cannot be less than the existing **LOL**

value.

HIL Reads current high-limit setpoint value;

returns h.

HPT PEAK "DEFEAT" THRESHOLD*

HPT=t Sets the width of the "peak defeat"

input threshold for the meter's "auxiliary" DAC output (Channel 2) to t, which is expressed in engineering units and to the decimal-point precision of the current **FSU** value; -199990 \leq h \leq 199990; t should not be greater than 20% of the current full-scale reading.

HPT Reads current peak defeat threshold;

returns t.

IP0 through IP2 INSTRUMENT PARAMETER

Used to write and read miscellaneous instrument configuration information, as follows (each **IPn** string \$ can have up to 16 ASCII characters). Analogous to the set of **MODULE PARAMETER** ("MP") commands, above. NOTE: THESE COMMANDS ARE NOT PRESENTLY USED BY THE 3KP CONFIGURATOR.

LAT LIMIT LATCH

LAT=ON Enables latching of both limits for the

meter's "auxiliary" DAC output (Channel 2) by setting the latch mode to ON.

LAT=OFF Disables latching of both limits for the

meter's "auxiliary" DAC output (Channel 2) by setting the latch mode to ON.

LAT Reads current latch mode setting;

returns ON or OFF.

LIM LIMITS

LIM=ON Enables continuous monitoring of both

limits for the meter's "auxiliary" DAC output (Channel 2) by setting the limit

mode to ON.

LIM=OFF Disables continuous monitoring of both

limits for the meter's "auxiliary" DAC output (Channel 2) by setting the limit

mode to OFF.

LIM Reads current limit mode setting;

returns ON or OFF.

LHY LOW LIMIT HYSTERESIS

LHY=h Sets the width of the low-limit hystere-

sis deadband for the meter's "auxiliary" DAC output (Channel 2) to the value h, which is expressed in engineering units and to the decimal-point precision of the current **FSU** value; $0 \le h \le 199990$;

* Formerly called "HAVE PEAK THRESHOLD."

h cannot be greater than the difference between the existing **HIL** and **LOL** val-

ues.

LHY Reads current low-limit hysteresis

value; returns h.

LKR LEAK RATE

LKR=m Sets the decay rate for the meter's

"auxiliary" DAC output (Channel 2) to m (% of full scale per second), where

 $-3.50 \le m \le 3.50$.

LKR Reads current leak rate value; returns

m.

LMS LIMITS SECURITY

LMS=ON Turns on the instrument's limits securi-

ty, so that the local operator can view and modify limit values only through the standard front-panel setup proce-

dure.

LMS=OFF Turns off the instrument's limits securi-

ty, so that the local operator can use the front-panel buttons to view and modify limit values during normal runtime operation (without entering setup

mode).

LMS Reads current limits security setting;

returns ON or OFF.

LOL LOW LIMIT

LOL=h Sets the low-limit setpoint for the

meter's "auxiliary" DAC output (Chan-

nel 2) to the value h, which is

expressed in engineering units and to the decimal-point precision of the current **FSU** value; -199990 \leq h \leq 199990; h cannot be greater than the existing **HIL** value. Applies only to the meter's "auxiliary" DAC output (Channel 2).

LOL Reads current low-limit setpoint value;

returns h.

PKM PEAK MODE

PKM=n Sets to n the peak mode to be in effect

for the meter's "auxiliary" DAC output (Channel 2) when peak capture operation is enabled via logic-signal input; n = 1 (for PEAK mode) or 2 (for VALLEY

mode).

PKM Reads current peak mode setting;

returns n.

POL POLARITY

POL=NO Sets the polarity of the meter's limit-

zone relays to NORMALLY OPEN.

POL=NC Sets the polarity of the meter's limit-

zone relays to NORMALLY CLOSED.

POL Reads current polarity setting; returns

NO or NC.

SMD Reads current sensitivity mode setting

for "ABSOLUTE TRANSDUCER" calibration (see Section 4.E of this manual); returns 1 (for "VOLTS FULL SCALE") or 2 (for "VOLTS PER UNIT"). This parameter is primarily for front-panel menuing, and is not included in a 3000PLUS

configuration file.

SEC SECURITY

SEC=n Sets the security code that must be

entered via the meter's front panel before any front-panel configuration changes can be made (n is any fourdigit number between 0000 and 9999).

SEC Reads current security code number;

returns n.

SMD SENSITIVITY MODE

NOTE: THIS COMMAND IS CURRENTLY RECOGNIZED ONLY BY A 3000PLUS WITH AN INSTALLED MODEL 5D64 DC VOLTAGE CONDITIONER MODULE. IT ONLY TAKES THE FOLLOWING "READ" FORM:

TAR TARE

TAR

TAR=m Sets the tare offset for the meter's

"auxiliary" DAC output (Channel 2) to yield a reading of m when application of the tare offset is enabled via logic-signal input. The value m is expressed in engineering units and to the decimal-point precision of the current **FSU** value; -199990 \leq m \leq 199990; stores in EEPROM memory the actual tare offset

required to yield a reading of m.

Reads last-entered "tared" reading;

returns m.

A.4 3000PLUS IMPERATIVE COMMANDS

CHN CHANNEL

DISPLAY

DIS

DIS=x

CHNx Returns the current reading of the

meter's Channel No. x, where x = 1 (for the basic 5-VDC output, scaled to engineering units), 2 (for the "auxiliary" DAC output), or 3 (for the "scaled voltage"

output).

Calls the meter's Channel No. x to display (for channel numbers, see the

CHN command, above). Note that on powerup, Channel 1 will be automati-

cally displayed.

DIS Returns the number of the currently

displayed channel (x).

HLD HOLD

HLD=ON "Freezes" the current values of Chan-

nel 2 ("auxiliary" DAC output) and Channel 3 ("raw volts" output) until receipt of a subsequent **HLD** = **OFF** command or recycling of power.

HLD=OFF "Unfreezes" Channels 2 and 3, allowing

them to resume normal operation. The meter will always power up in the HLD =

OFF state.

HLD Returns the current "hold status" of

Channels 2 and 3 (ON or OFF).

RLS RELEASE

RLS "Unlatches" any and all latched limits

for the meter's "auxiliary" DAC output (Channel 2), when limits mode and latch mode are both ON (see the LIM and LAT commands, respectively).

APPENDIX B: ABSOLUTE CALCULATIONS

5D64 ABSOLUTE CALIBRATION CALCULATIONS

A range value with respect to transducer electrical units (R_e) is first calculated:

• if the 5D64 is in **VOLTAGE** calibration mode,

$$R_e = CAL3$$

 if the 5D64 is in TRANSDUCER @ VOLTS, FULL SCALE calibration mode,

$$R_{P} = (CAL3/CAL1) \cdot CAL2$$

 if the 5D64 is in TRANSDUCER @ VOLTS/UNIT calibration mode,

where in each case the allowed limits of R_e (for the Model 5D64) are 0.05 to 239.985 (VDC).* For an explanation of the "CAL1," "CAL2," "CAL3," "CAL4," and "CAL5" values, see Section 4.E.

Using the calculated R_e as a "practical range" value, an appropriate *nominal* full-scale input **RANGE (RNG)** setting is determined by means of the following table**:

Table 2
"Practical" 5D64
Range (RNG) Settings

"Practical" Range (VDC)	Range To Select (VDC)	Corresponding "RNG" Setting
0.0500 - 0.0779	0.05	0
0.0780 - 0.1039	0.075	1
0.1040 - 0.1559	0.1	2
0.1560 - 0.2079	0.15	3
0.2080 - 0.3119	0.2	4
0.3120 - 0.4159	0.3	5
0.4160 - 0.5199	0.4	6
0.5200 - 0.7799	0.5	7
0.7800 - 1.0399	0.75	8
1.0400 - 1.5599	1	9
1.5600 - 2.0799	1.5	Α
2.0800 - 3.1199	2	В
3.1200 - 4.1599	3	С
	(cont'd)	

^{*} These limits are defined for the product (MSF•RNG), which must lie between the low limit of "0.05" (= 1.0000 x 0.05, for the lowest RNG of 0.05 VDC) and the high limit of "239.985" (= 1.5999 x 150, for the highest RNG of 150 VDC).

4.1600 - 5.1999	4	D
	•	
5.2000 - 7.7999	5	E
7.8000 - 10.3999	7.5	F
10.4000 - 15.5999	10	G
15.6000 - 20.7999	15	Н
20.8000 - 31.1999	20	I
31.2000 - 41.5999	30	J
41.6000 - 51.9999	40	K
52.0000 - 77.9999	50	L
78.0000 - 103.9999	75	M
104.0000 - 155.9999	100	N
156.0000 - 239.9850	150	Ο

The MSF gain factor is then calculated by

where RNG is the VDC value corresponding to the module's current **RANGE** (RNG) setting (as given in Table 2). To be accepted by the 5D64 module, the **MSF** value must be expressed in the format of **1.XXXX**; it cannot be less than 1.0000 or greater than 1.5999.

If the CAL4 value has been entered in *engineering units*, the MIO offset term (as a percentage of the selected full-scale input range) is calculated by

If CAL4 has been entered in millivolts, MIO is

The MIO value must be expressed in the format of XX.XX (%), with or without minus sign; its absolute value cannot be greater than 20 (since the offset cannot be greater than 20% of the selected full-scale input range).

The SYM adjustment factor is calculated by

where "NCAL3" = CAL3 • (-1). The **SYM** value must be expressed in the format of **X.XX** (%), with or without minus sign; its absolute value cannot be greater than 2.

The 5D64 is then calibrated "absolutely" upon receipt of the appropriate RANGE (RNG), MODULE SCALE FACTOR (MSF), MODULE INPUT OFFSET (MIO), and NEGATIVE SYMMETRY (SYM) setup commands (for command syntax, see Appendix A).

^{**} This table takes into account the effective 4% overlap that has been built into the 5D64 scaling structure. As can be seen from the table, if the actual full-scale range lies close to a given nominal range value, it is most "practical" to select the range just below that nominal value. For example, if your actual transducer full-scale range is 10 VDC, it is most practical to select a nominal range of 7.5 VDC (and NOT 10 VDC), since 10 lies within the "practical" range of "7.8000 - 10.3999."

Daytronic Corporation